1. Обозначим точки пересечения с прямой L: А1 и В1 соответственно точкам А и В. Расстояние от точки до прямой определяется длиной перпендикуляра, следовательно, надо найти АА1. Когда сделаем чертеж, получим прямоугольную трапецию АА1ВВ1. Обозначим точку на прямой l M1. То есть: АА1, BB1 и MM1 ⊥ L, и AA1, MM1 и ВВ1 ║L.
2. Зная, что АМ=МВ (по условию) и АА1, ММ1 и ВВ1 ║а (п. 1) получим: А1М1=М1В1 (по теореме Фалеса).
3. Найдем АА1 по формуле средней линии трапеции: (АА1+12)/2=16, отсюда АА1 = 20 см.
Дано : ABCDA₁B₁C₁D₁ прямой параллелепипед AD = 5 см ,∠B₁EB =α =15° , S(A₁B₁C₁D) =10 см². V =V(ABCDA₁B₁C₁D₁) - ?
Решение V = V(ABCDA₁B₁C₁D₁) = S(ABCD)*BB₁ ; Проведена B₁E ⊥ AD и точка E соединена с вершиной B. AD ⊥ EB₁ ⇒ AD ⊥ EB (теорема трех перпендикуляров _EB проекция наклонной EB₁ на плоскость ABCD)
∠B₁EB =α =15° будет линейным углом двугранного угла B₁ADC
V = S(AD*BE)*BB₁ =(AD*B₁E*cosα)*B₁E*sinα =(AD*B₁E²*sin2α)/2=(AD*B₁E²*sin30°)/2=AD*B₁E²/ 4 ,но S =AD*B₁E⇔ B₁E = S/AD
1. Обозначим точки пересечения с прямой L: А1 и В1 соответственно точкам А и В. Расстояние от точки до прямой определяется длиной перпендикуляра, следовательно, надо найти АА1. Когда сделаем чертеж, получим прямоугольную трапецию АА1ВВ1. Обозначим точку на прямой l M1. То есть: АА1, BB1 и MM1 ⊥ L, и AA1, MM1 и ВВ1 ║L.
2. Зная, что АМ=МВ (по условию) и АА1, ММ1 и ВВ1 ║а (п. 1) получим: А1М1=М1В1 (по теореме Фалеса).
3. Найдем АА1 по формуле средней линии трапеции: (АА1+12)/2=16, отсюда АА1 = 20 см.
ответ: 20 см
task/30528090
Дано : ABCDA₁B₁C₁D₁ прямой параллелепипед AD = 5 см ,∠B₁EB =α =15° , S(A₁B₁C₁D) =10 см². V =V(ABCDA₁B₁C₁D₁) - ?
Решение V = V(ABCDA₁B₁C₁D₁) = S(ABCD)*BB₁ ; Проведена B₁E ⊥ AD и точка E соединена с вершиной B. AD ⊥ EB₁ ⇒ AD ⊥ EB (теорема трех перпендикуляров _EB проекция наклонной EB₁ на плоскость ABCD)
∠B₁EB =α =15° будет линейным углом двугранного угла B₁ADC
V = S(AD*BE)*BB₁ =(AD*B₁E*cosα)*B₁E*sinα =(AD*B₁E²*sin2α)/2=(AD*B₁E²*sin30°)/2=AD*B₁E²/ 4 ,но S =AD*B₁E⇔ B₁E = S/AD
следовательно V = S²/4*AD =(10 см²)²/ (4*5 см) = 5 см³.
ответ : 5 см³ . cм ПРИЛОЖЕНИЕ