Найти квадрат площади параллелограмма если его большая диагональ равна 2√7, а высоты равны √3 и 2√3.знайти квадрат площі паралелограма якщо його більша діагональ дорівнює 2√7, а висоти дорівнюють √3 і 2√3.
ответ: arcsin 0,99846, что соответствует углу 86,82°
Объяснение:
Основание правильной пирамиды – правильный многоугольник, боковые грани - равнобедренные треугольники, а вершина проецируется в центр окружности, описанной около основания.
Рассмотрим рисунок приложения:
Для правильного треугольника R=a/√3, где а- сторона основания. ОС=R=4√3:√3=4. Из отношению катета и гипотенузы ОС:SС=4:5 следует ∆ SОС - египетский, ⇒ высота пирамиды SО=3
Проведем высоту СН основания и апофему грани SAB. Высота СН⊥АВ. По т. о 3-х перпендикулярах SН⊥АВ.
SН и СН лежат в плоскости SСН. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости. ⇒ АВ перпендикулярна плоскости SСН. ⇒ Плоскость SСН⊥АВ.
Если плоскость перпендикулярна прямой, по которой пересекаются две другие плоскости, то она перпендикулярна и этим плоскостям.⇒ (SСН)⊥(АSВ). ⇒
Искомый угол СSН
* * *
СН=АС•sin60°=4√3•√3/2=6 ⇒
2S(СSН)=SО•СН=3•6=18.
НО=СН-СО=6-4=2.
SН=√(SО²+ОН²)=√(9+4)=√13
Проведем высоту СК к стороне SН.
2S(CSH)=СК•SН ⇒ CK=2S:SH=18/√13 Синус СSК=СК:СS= (18/√13):5=0,99846, что соответствует углу 86,82°
Вычислить нужный угол можно с тем же результатом по т. косинусов: СН²=SН²+СS²-2•SН•SС•cos(CSH) .
ответ: arcsin 0,99846, что соответствует углу 86,82°
Объяснение:
Основание правильной пирамиды – правильный многоугольник, боковые грани - равнобедренные треугольники, а вершина проецируется в центр окружности, описанной около основания.
Рассмотрим рисунок приложения:
Для правильного треугольника R=a/√3, где а- сторона основания. ОС=R=4√3:√3=4. Из отношению катета и гипотенузы ОС:SС=4:5 следует ∆ SОС - египетский, ⇒ высота пирамиды SО=3
Проведем высоту СН основания и апофему грани SAB. Высота СН⊥АВ. По т. о 3-х перпендикулярах SН⊥АВ.
SН и СН лежат в плоскости SСН. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости. ⇒ АВ перпендикулярна плоскости SСН. ⇒ Плоскость SСН⊥АВ.
Если плоскость перпендикулярна прямой, по которой пересекаются две другие плоскости, то она перпендикулярна и этим плоскостям.⇒ (SСН)⊥(АSВ). ⇒
Искомый угол СSН
* * *
СН=АС•sin60°=4√3•√3/2=6 ⇒
2S(СSН)=SО•СН=3•6=18.
НО=СН-СО=6-4=2.
SН=√(SО²+ОН²)=√(9+4)=√13
Проведем высоту СК к стороне SН.
2S(CSH)=СК•SН ⇒ CK=2S:SH=18/√13 Синус СSК=СК:СS= (18/√13):5=0,99846, что соответствует углу 86,82°
Вычислить нужный угол можно с тем же результатом по т. косинусов: СН²=SН²+СS²-2•SН•SС•cos(CSH) .
1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²