1) т.к. точка О середина отрезков, то РО =OQ SO = OR POS=ROQ POR = SOQ т.к. вертикальные углы Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны Значит треугольник POS= треугольнику ROQ , а треугольник POR = треугольнику SOQ Отсюда следует, что PS = RQ PR = SQ
2) рассмотрим треугольник ОВN и треугольник OAM угол О общий, сторона ON = стороне ОМ угол ONB = углу ОМА Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. Значит эти треугольники равны. Отсюда следует, что BN = AM угол В = углу А
РО =OQ SO = OR
POS=ROQ POR = SOQ т.к. вертикальные углы
Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны
Значит треугольник POS= треугольнику ROQ ,
а треугольник POR = треугольнику SOQ
Отсюда следует, что PS = RQ PR = SQ
2) рассмотрим треугольник ОВN и треугольник OAM
угол О общий, сторона ON = стороне ОМ угол ONB = углу ОМА
Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Значит эти треугольники равны. Отсюда следует, что
BN = AM угол В = углу А
рассмотрим треугольник АВН, он прямоугольный, а угол А=45 град, значит угол АВН тоже равен 45 град, отсюда следует, что треугольник равнобедренный, т.е. АН = ВН = 2 см
по теореме Пифагора АВ² = ВН² + АН²
АВ² = 2² + 2² = 8
АВ = √8 = 2√2
S = АВ * sinA * (АД - АВ * cosA)
12 = 2√2 * 1/√2 * (АД - 2√2 * 1/√2)
12 = 2АД - 4
АД =7
S = h*(ВС+АД)/2
12 = 2 * (ВС+7)/2
ВС = 5
ответ: основания трапеции 5 и 7 см, а боковые стороны 2√2 см