По данным условия и рисунка многогранние ABCF - треугольная пирамида.
а) Прямые АВ и В1С1 - скрещивающиеся по определению: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Так как В1С1 параллельна ВС, то угол между скрещивающимися прямыми АВ и В1С1 равен углу между пересекающимися прямыми АВ и ВС. То есть это угол АВС = 80° (дано).
б) Аналогично. Так как А1С1 параллельна АС, то угол между скрещивающимися прямыми А1С1 и ВС равен углу между пересекающимися прямыми АС и ВС. То есть это угол АСВ. В треугольнике АВС по сумме внутренних углов треугольника
Проекция катета на гипотенузу - это перпендикуляр, опущенный из вершины прямого угла на гипотенузу.
Теорема:
Перпендикуляр, опущенный из вершины прямого угла на гипотенузу есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гипотенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
1) Обозначим гипотенузу с, тогда, согласно теореме:
с : 30 = 30 : 18
с = 30² : 18 = 900 : 18 = 50 см
2) По теореме Пифагора находим другой катет b:
b = √(50² - 30²) = √(2500 - 900) = √1600 = 40 см
ответ: гипотенуза равна 50 см, а второй катет равен 40 см.
а) 80°. б) 70°.
Объяснение:
По данным условия и рисунка многогранние ABCF - треугольная пирамида.
а) Прямые АВ и В1С1 - скрещивающиеся по определению: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".
Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.
Так как В1С1 параллельна ВС, то угол между скрещивающимися прямыми АВ и В1С1 равен углу между пересекающимися прямыми АВ и ВС. То есть это угол АВС = 80° (дано).
б) Аналогично. Так как А1С1 параллельна АС, то угол между скрещивающимися прямыми А1С1 и ВС равен углу между пересекающимися прямыми АС и ВС. То есть это угол АСВ. В треугольнике АВС по сумме внутренних углов треугольника
∠АСВ = 180° - 30° - 80° = 70°.
Значит искомый угол равен 70°.
Гипотенуза равна 50 см; второй катет равен 40 см.
Объяснение:
Проекция катета на гипотенузу - это перпендикуляр, опущенный из вершины прямого угла на гипотенузу.
Теорема:
Перпендикуляр, опущенный из вершины прямого угла на гипотенузу есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гипотенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
1) Обозначим гипотенузу с, тогда, согласно теореме:
с : 30 = 30 : 18
с = 30² : 18 = 900 : 18 = 50 см
2) По теореме Пифагора находим другой катет b:
b = √(50² - 30²) = √(2500 - 900) = √1600 = 40 см
ответ: гипотенуза равна 50 см, а второй катет равен 40 см.