Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: AC²=AB²+BC²-2*AB*BC*cos∠B Известно, что АВ=ВС+4. Подставляем все известные значения в формулу: 14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120° 196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2) 196=2BC²+8BC+16+BC²+4BC 3BC²+12BC-196+16=0 3BC²+12BC-180=0 |:3 BC²+4BC-60=0 D=4²-4*(-60)=16+240=256=16² BC=(-4-16)/2=-10 - не подходит BC=(-4+16)/2=6 см АВ=6+4=10 см
цилиндр.
Р осевого сечения = 28 м
D : h = 4 : 3
Найти:V - ?
Решение:Пусть АВ, ВС, AD, CD - стороны осевого сечения.
АВ = CD = h (или ОО1)
D = AD = BC
=> осевое сечение данного цилиндра (если секущая плоскость совпадает с осью цилиндра) - прямоугольник.
Осевое сечение не может быть квадратом, так как в квадрате все стороны равны, а у нас D : h = 4 : 3, по условию.
Составим уравнение, с которого определим величину высоты и диаметра (а также сторон прямоугольника):
Пусть х - часть диаметра; высоты, 4х - диаметр, 3х - высота.
Так как D = AD = ВС => мы находим ещё и сторону AD
Так как АВ = CD = h => мы находим ещё и сторону АВ.
P прямоугольника = (a + b) * 2 = 28 см, по условию.
(4х + 3х) * 2 = 28
7х * 2 = 28
14х = 28
х = 2
2 см - часть, высоты и диаметра (можно ещё сказать, что это часть AD, AB, CD и ВС)
D = AD = BC = 2 * 4 = 8 см
h = AB = CD = 2 * 3 = 6 см
V = пR²h
R - радиус.
R = D/2 = 8/2 = 4 см
V = п((4)² * 6) = 96п см^3
ответ: 96п см^3AC²=AB²+BC²-2*AB*BC*cos∠B
Известно, что АВ=ВС+4. Подставляем все известные значения в формулу:
14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120°
196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2)
196=2BC²+8BC+16+BC²+4BC
3BC²+12BC-196+16=0
3BC²+12BC-180=0 |:3
BC²+4BC-60=0
D=4²-4*(-60)=16+240=256=16²
BC=(-4-16)/2=-10 - не подходит
BC=(-4+16)/2=6 см
АВ=6+4=10 см
ответ: АВ=10 см, ВС=6 см.