В прямоугольном треугольнике больший угол равен 90°. Гипотенуза лежит против угла 90°. Против большего угла лежит большая сторона, • Гипотенуза прямоугольного треугольника больше каждого из катетов. a < c > b
• Две высоты прямоугольного треугольника совпадают с его катетами.
• Высота прямоугольного треугольника, проведенная к гипотенузе, делит его на подобные треугольники.
• Если катет, лежит против угла 30°, он равен половине гипотенузы.
• Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, равна половине гипотенузы и является радиусом описанной около этого треугольника окружности.
• Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
• Высота, проведенная к гипотенузе, - есть среднее пропорциональное между отрезками, на которые она делит гипотенузу ( т.е. между проекциями катетов на гипотенузу)
• Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
Номер 73
Боковая сторона Х
Основание Х-8
Х+Х+Х-8=28
ЗХ=28+8
ЗХ=36
Х=36:3
Х=12
Каждая боковая сторона равна 12 см
Основание равно 12-8=4 см
Проверка
12•2+4=28 см
Номер 74
Основание Х
Боковая сторона 3Х
Х+3Х+3Х=84
7Х=84
Х=84:7
Х=12
Основание 12 см
Каждая боковая сторона 12•3=36 см
Проверка
36•2+12=84 см
Номер 75
Судя по чертежу,треугольник АВС равнобедренный,т к АВ=ВС
В равнобедренном треугольнике углы при основании равны между собой,т е
<ВАС=<ВСА
Углы 1 и 2 являются внешними углами.Сумма внешнего угла и смежного ему внутреннего равна 180 градусов
<1=180-<ВАС
<2=180-<ВСА,а как известно,<ВАС=<ВСА
Поэтому <1=<2
Объяснение:
• Гипотенуза прямоугольного треугольника больше каждого из катетов. a < c > b
• Сумма острых углов прямоугольного треугольника 180°-90°=90°
• Две высоты прямоугольного треугольника совпадают с его катетами.
• Высота прямоугольного треугольника, проведенная к гипотенузе, делит его на подобные треугольники.
• Если катет, лежит против угла 30°, он равен половине гипотенузы.
• Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, равна половине гипотенузы и является радиусом описанной около этого треугольника окружности.
• Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
• В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов (теорема Пифагора):
c²=a²+b²
• Высота, проведенная к гипотенузе, - есть среднее пропорциональное между отрезками, на которые она делит гипотенузу ( т.е. между проекциями катетов на гипотенузу)
• Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.