Зовнішній кут дорівнює сумі двох внутрішніх кутів трикутника не суміжних з ним.
Сума кутів трикутника дорівнює 180 градусів.
З умови задачі слідує, що
кут А+кут В=11*р
кут В+кут С=12*р
кут А+кут С=13*р , де р - деяке число градусів
додавши ці три рівності отримаємо
2*(кут А+кут В+кут С)=(11+12+13)*р або
2*180 градусів=36р або
р=10 градусів
і
кут А+кут В=110 градусів
кут В+кут С=120 градусів
кут А+кут С=130 градусів
а значить
кут С=180-110=70 градусів
кут А=180-120=60 градусів
кут В=180-130=50 градусів
відповідь: 50 градусів, 60 градусів, 70 градусів
Відповідь:
ВС=10см
Пояснення:
ΔABD- правильний( всі сторони рівні), отже ∠ADB=60°- водночас він є зовнішнім кутом рівнобедренного трикутника ΔBDC( BD=DC), отже
∠DBC=∠DCB=60°:2=30°.
Розглянемо ΔВНС, де ∠Н=90°, ∠С= 30°, отже ВС = 2*ВН=2*5см=10см ( як гіпотенуза прямокутного трикутника, з катетом проти кута в 30° рівним 5 см)
ВС > AD, так як АD=DC, а в трикутнику ΔВНС ВС- є гіпотенузою, а DC- лиш частиною катету ( катет завжди менший від гіпотенузи).
Так як трикутник ΔBDC- існує, він рівнобедренній, то ВС∠ВD+DC ( а за умовою задачі ВD+DC=2 АD) , отже ВС∠2 АD.
Тому можемо записати , що AD<BC<2AD - виконується.
Зовнішній кут дорівнює сумі двох внутрішніх кутів трикутника не суміжних з ним.
Сума кутів трикутника дорівнює 180 градусів.
З умови задачі слідує, що
кут А+кут В=11*р
кут В+кут С=12*р
кут А+кут С=13*р , де р - деяке число градусів
додавши ці три рівності отримаємо
2*(кут А+кут В+кут С)=(11+12+13)*р або
2*180 градусів=36р або
р=10 градусів
і
кут А+кут В=110 градусів
кут В+кут С=120 градусів
кут А+кут С=130 градусів
а значить
кут С=180-110=70 градусів
кут А=180-120=60 градусів
кут В=180-130=50 градусів
відповідь: 50 градусів, 60 градусів, 70 градусів
Відповідь:
ВС=10см
Пояснення:
ΔABD- правильний( всі сторони рівні), отже ∠ADB=60°- водночас він є зовнішнім кутом рівнобедренного трикутника ΔBDC( BD=DC), отже
∠DBC=∠DCB=60°:2=30°.
Розглянемо ΔВНС, де ∠Н=90°, ∠С= 30°, отже ВС = 2*ВН=2*5см=10см ( як гіпотенуза прямокутного трикутника, з катетом проти кута в 30° рівним 5 см)
ВС > AD, так як АD=DC, а в трикутнику ΔВНС ВС- є гіпотенузою, а DC- лиш частиною катету ( катет завжди менший від гіпотенузи).
Так як трикутник ΔBDC- існує, він рівнобедренній, то ВС∠ВD+DC ( а за умовою задачі ВD+DC=2 АD) , отже ВС∠2 АD.
Тому можемо записати , що AD<BC<2AD - виконується.