По формуле объема пирамиды: V = (1/3)*S*h, где S это площадь основания пирамиды, h это высота пирамиды. h = 2*(√3). Пирамида правильная, значит 1) в основании ее лежит правильный многоугольник, в данном случае (т.к. пирамида треугольная) правильный треугольник. 2) Вершина пирамиды проецируется в центр основания, то есть если из вершины пирамиды опустить высоту к основанию пирамиды, то точкой пересечения этой высоты с основанием будет центр основания=центр описанной и вписанной окружностей правильного многоугольника, который лежит в основании пирамиды. Далее я на листочке написал, который прикрепил ниже. ответ. 216.
Так как трапеция равнобедренная, ее диагонали равны. АС = BD Координаты точки А: 9х - 8у - 25 = 0 х - 2у - 5 = 0 - А - точка пересечения прямых имеет координаты (1; -2). Точка В по условию (3; -4). Уравнение прямой ВС 9х - 8у - 59 = 0, Координаты точки С: 9х - 8у - 59 = 0 х - 2у - 5 = 0 - С - точка пересечения прямых имеет координаты (7,8; 1,4).
\Пусть координаты точки D равны х0 и у0.
Условие равенства диагоналей: (х0 - 3)^2 + (y0 + 4)^2 = (7,8 - 1)^2 + (1,4 + 2)^2 = 57,8 Так как точка D принадлежит и прямой AD, то 9х0 - 8у0 = 25.
где S это площадь основания пирамиды,
h это высота пирамиды.
h = 2*(√3).
Пирамида правильная, значит
1) в основании ее лежит правильный многоугольник, в данном случае (т.к. пирамида треугольная) правильный треугольник.
2) Вершина пирамиды проецируется в центр основания, то есть если из вершины пирамиды опустить высоту к основанию пирамиды, то точкой пересечения этой высоты с основанием будет центр основания=центр описанной и вписанной окружностей правильного многоугольника, который лежит в основании пирамиды.
Далее я на листочке написал, который прикрепил ниже.
ответ. 216.
АС = BD
Координаты точки А:
9х - 8у - 25 = 0
х - 2у - 5 = 0 - А - точка пересечения прямых имеет координаты (1; -2).
Точка В по условию (3; -4).
Уравнение прямой ВС 9х - 8у - 59 = 0,
Координаты точки С:
9х - 8у - 59 = 0
х - 2у - 5 = 0 - С - точка пересечения прямых имеет координаты (7,8; 1,4).
\Пусть координаты точки D равны х0 и у0.
Условие равенства диагоналей:
(х0 - 3)^2 + (y0 + 4)^2 = (7,8 - 1)^2 + (1,4 + 2)^2 = 57,8
Так как точка D принадлежит и прямой AD, то
9х0 - 8у0 = 25.
Решая систему, получаем: х0 = 5 84/145, у0 = 3 22/145.
ответ: D (5 84/145; 3 22/145)