Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны, что следует из условия. Т.к. ∠А=∠А₁, ∠В=∠В₁, то треугольники АВС и А₁В₁С₁ подобны, а в подобных треугольниках сходственные стороны пропорциональны,
1. т.к трапеция р/б, то углы при основаниях равны; углы, прилежащие к основанию, в сумме 180, т.е угол у второго основания 180-75=105. два угла по сто пять и два по 75 2. угол С равен 90, СД - катет против угла в 30 градусов, значит, равен 0,5 гипотенузы АД, т.е АД = 8.диагонали прямоугольника равны. 3. написаны не те углы 4. диагонали в ромбе пересекаются под прямым углом, делят ромб на равные треугольники и являются биссикриссами. тогда угол всо - 60/2=30, угол между диагоналями 90, а овс=180-90-30=60
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны, что следует из условия. Т.к. ∠А=∠А₁, ∠В=∠В₁, то треугольники АВС и А₁В₁С₁ подобны, а в подобных треугольниках сходственные стороны пропорциональны,
Значит, АВ=А₁В₁=ВС/В₁С₁⇒6/9=8/В₁С₁; В₁С₁=9*8/6=12/см/
6/9=АС/А₁С₁⇒АС=6*18/9=12/см/
Проверим пропорциональность сходственных сторон
АВ/А₁В₁=ВС/В₁С₁=АС/А₁С₁; 6/9=8/12=12/18.
Все отношения после сокращения дают 2/3, значит, найдены неизвестные стороны верно.
два угла по сто пять и два по 75
2. угол С равен 90, СД - катет против угла в 30 градусов, значит, равен 0,5 гипотенузы АД, т.е АД = 8.диагонали прямоугольника равны.
3. написаны не те углы
4. диагонали в ромбе пересекаются под прямым углом, делят ромб на равные треугольники и являются биссикриссами.
тогда угол всо - 60/2=30, угол между диагоналями 90, а овс=180-90-30=60