центр описанной окружности треугольника совпадает с точкой пересечения серединных перпендикуляров. значит, нам нужно найти эту точку.
есть два способа ( может быть их больше ), которые вроде смогут .
1. способ:
линейка имеет форму прямоугольника. каждую сторону треугольника делим пополам, и оттуда вычертим серединные перпендикуляры.
2. способ. линейка не имеет вид ппямоугольника или углы уже не прямые. каждая сторона будет основанием для нового треугольника, с концов стороны мы проводим равные отрезки соединёнными в одну точку. теперь проводим медиану, поделив основание пополам, а медиана в равнобедренном треугольнике, проведённая к основанию, и есть высота. делаем это с каждой стороной.
теперь, у нас есть все серединные перпендикуляры. если они ещё не соединились друг с другом, нужно продолжить их.
1/20
Объяснение:
Свойства сечения, параллельного основанию пирамиды:
Если пирамиду пересекает плоскость, параллельная основанию, то
1. Плоскость делит боковое ребро и высоту пирамиды на пропорциональные отрезки;
2. В сечении образуется многоугольник, подобный многоугольнику основания;
3. Площади сечения и основания относятся как квадраты расстояний от них до вершины пирамиды.
Отношение площадей равно 9/3600
√(9/3600)=3/60=1/20 - отношение расстояний от сечений до вершины пирамиды (расстояния в данном случае - это и есть высоты)
объяснение:
центр описанной окружности треугольника совпадает с точкой пересечения серединных перпендикуляров. значит, нам нужно найти эту точку.
есть два способа ( может быть их больше ), которые вроде смогут .
1. способ:
линейка имеет форму прямоугольника. каждую сторону треугольника делим пополам, и оттуда вычертим серединные перпендикуляры.
2. способ. линейка не имеет вид ппямоугольника или углы уже не прямые. каждая сторона будет основанием для нового треугольника, с концов стороны мы проводим равные отрезки соединёнными в одну точку. теперь проводим медиану, поделив основание пополам, а медиана в равнобедренном треугольнике, проведённая к основанию, и есть высота. делаем это с каждой стороной.
теперь, у нас есть все серединные перпендикуляры. если они ещё не соединились друг с другом, нужно продолжить их.