Сектор - часть круга. Длина дуги сектора вычисляется по формуле: L=π*r*n/180°. В нашем случае n=90°, L=π*r/2. Заметим, что в этой формуле r = l - образующая конуса, а L - это длина окружности нашего конуса. Радиус окружности основания конуса находим поформуле: L=2π*R или в нашем случае π*r/2=2π*R, отсюда R=π*r/(2*2π)=r/4. Теперь рассмотрим осевое сечение конуса. Это равнобедренный треугольник с боковыми сторонами - образующей конуса и основанием - диаметром окружности основания конуса. Причем высота конуса SH - это и биссектриса и медиана этого треугольника. В прямоугольном треугольнике SHC синус угла HSC равен отношению противолежащего катета (R) к гипотенузе (l=r) или Sin(<HSC)=(r/4)/r=1/4. Заметим, что <HSC - это половина искомого угла при вершине конуса (так как SH - биссектриса). По формуле Sinα=2Sin(α/2)*Cos(α/2) найдем искомый угол α. Cosα=√(1-sin²α)=√(1-1/16)=√15/4. Sinα=2*(1/4)*(√15/4)=√15/8. ответ: угол при вершине конуса равен arcsin(√15/8). α≈29°
Можно найти угол при вершине по теореме косинусов: Cosα=(a²+b²-c²)/2ab, где угол α - угол между сторонами a и b. В нашем случае a=b=r, c=2R=r/2. Тогда Cosα=(2r²-r²/4)/2r²=7r²/8r²=0,875. α=arccos0,875 или α≈29°.
⇒ AB : 26 = 5 : 13 ⇒ AB = 10
AD = √(IACI² - IABI²) = √(13² - 10²) = √69
S = AB·AD = 10·√69
-
Дано ромб ABCD; AB = BC = CD = DA ; AC⊥BD ; O тачка пересечения
диагональ ; AC > BD
AC + BD = 14 ⇒ BD = 14 - AC
AC + AB = 13 ⇒ AB = 13 - AC
AB² = AO² + OB² ⇒
(13 - AC)² = (AC/2)² + [(14 - AC)/2]² обозн. AC=x
4· (169 - 26x + x²) = x² + x² - 28x + 196
x² - 38x+240 = 0 ⇒ x = 11 ⇒
AC = 11; BD = 3; AB = 2
S(Трапеции) = 1/2·AC·BD = 1/2·11·3 = 16,5
Дано параллелограмм ABCD BE высота
AB= 3 ; AD = 5 ; ∡ ABE = 60°
⇒ BE = AB·Cos60°= 3·1/2 = 1,5
S = AD·BE = 5·1,5 = 7,5
S = 7,5
L=π*r*n/180°.
В нашем случае n=90°, L=π*r/2. Заметим, что в этой формуле
r = l - образующая конуса, а L - это длина окружности нашего конуса. Радиус окружности основания конуса находим поформуле: L=2π*R или в нашем случае π*r/2=2π*R, отсюда R=π*r/(2*2π)=r/4.
Теперь рассмотрим осевое сечение конуса.
Это равнобедренный треугольник с боковыми сторонами - образующей конуса и основанием - диаметром окружности основания конуса.
Причем высота конуса SH - это и биссектриса и медиана этого треугольника.
В прямоугольном треугольнике SHC синус угла HSC равен отношению
противолежащего катета (R) к гипотенузе (l=r) или Sin(<HSC)=(r/4)/r=1/4.
Заметим, что <HSC - это половина искомого угла при вершине конуса (так как SH - биссектриса).
По формуле Sinα=2Sin(α/2)*Cos(α/2) найдем искомый угол α.
Cosα=√(1-sin²α)=√(1-1/16)=√15/4.
Sinα=2*(1/4)*(√15/4)=√15/8.
ответ: угол при вершине конуса равен arcsin(√15/8).
α≈29°
Можно найти угол при вершине по теореме косинусов:
Cosα=(a²+b²-c²)/2ab, где угол α - угол между сторонами a и b.
В нашем случае a=b=r, c=2R=r/2.
Тогда Cosα=(2r²-r²/4)/2r²=7r²/8r²=0,875. α=arccos0,875 или α≈29°.