В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Васелёк05
Васелёк05
25.10.2022 22:11 •  Геометрия

Найти площадь боковой и полной поверхности правильной прямой шестиугольной призмы, если сторона основания равна 12см, а длина бокового ребра-20 см.

Показать ответ
Ответ:
AlinaTishka
AlinaTishka
10.10.2020 19:18

а) Пусть искомый угол <HAP=α.

<BPA - внешний угол треугольника АРС.

<BPA = (1/2)*<A +<С (внешний угол треугольника равен сумме двух внутренних, не смежных с ним).

<BHA =90° - внешний угол треугольника НАР.

<BHA=α+<BPA. Или α+<BPA=90°. Или

α=90°-(1/2)*<A - <С.(1)

<A=180-<B-<C (сумма внутренних углов треугольника равна 180°).

Тогда из (1):

α=90°-(1/2)*(180-<B-<C) - <С. Или

α=90°-90°+<B/2 +<C/2-<C = <B/2-<C/2.

ответ: искомый угол равен α=|<B-<C|/2, что и требовалось доказать.

Второй вариант:

Пусть искомый угол <HAP=α.

<BPA - внешний угол треугольника АРС.

<BPA = (1/2)*<A +<С (1) (внешний угол треугольника равен сумме двух

внутренних, не смежных с ним).

<BHA =90° - внешний угол треугольника НАР.

<BРA=α+90°. Тогда из (1):

α=(1/2)*<A +<С - 90°. (2)

<A=180-<B-<C (сумма внутренних углов треугольника равна 180°).

Тогда из (2):

α=90°-(1/2)*<B-(1/2)*<C) - 90°+<С. Или

α=<С/2 - <В/2 = |<B-<C|/2.

P.S. Рассматривать все комбинации углов треугольника (в том числе и

тупоугольниго) нет необходимости, так как доказательство будет

подобным. Искомый угол равен модулю разности значений углов

В и С, так как отрицательное значение не удовлетворяет условию.


б). Искомый угол - угол СDE = α.

<CBE - внешний угол треугольника CDB.

<CBE=<DCB+α = >

(1/2)*(180 - <B) =(1/2)*<C + α . =>

α = 90° - (1/2)*<B -(1/2)*<C.

α = 90° - (1/2)*(<B+<C) . =>

2α = 180° - (<B+<C) . =>

2α = <A.

α = <A/2. Что и требовалось доказать.


в) CD и ВЕ - биссектрисы.

Искомый угол - угол α.

α = 180° - (1/2)*(В+С) (сумма внутренних углов треугольника

ВОС=180°). =>

2α =360° -(<B+<C) = 180°+180°-(<B+<C).

<A = 180°-(<B+<C).

2α = 180° + <A.

α = 90°+<A/2, что и требовалось доказать.


Докажите,что для любого треугольника abc выполняются следующие утверждения : а)биссектриса угла а с
Докажите,что для любого треугольника abc выполняются следующие утверждения : а)биссектриса угла а с
Докажите,что для любого треугольника abc выполняются следующие утверждения : а)биссектриса угла а с
0,0(0 оценок)
Ответ:
Эзоз
Эзоз
31.08.2021 14:45

1. Радиус сферы равен половине диаметра, R = 25 см.

Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.

Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:

АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм

Линия пересечения сферы плоскостью - окружность. Ее длина:

C = 2π·AC = 2π · 20 = 40π см

2. Сечение шара - круг. Его площадь равна 36π см²:

Sсеч = π · r² = 36π

r² = 36

r = 6 см

Из прямоугольного треугольника АОС по теореме Пифагора:

ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.

3. Радиус большого круга равен радиусу шара.

Площадь сечения:

Sсеч = πr²

Площадь большого круга:

S = πR², R = √(S/π)

Sсеч / S = πr² / (πR²) = r²/ R²

По условию Sсеч / S = 3 / 4, ⇒

r²/ R² = 3 / 4, тогда r/R = √3/2

В прямоугольном треугольнике АОС r/R - это косинус угла А.

Тогда ∠А = 30°.

Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен

OC = R/2 = √(S/π) / 2 = √S/(2√π)

4. Радиус шара равен половине диаметра:

R = 2√3 см

Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому

ОС = r = R/√2 = 2√3 / √2 = √6 см

Sсеч = πr² = π · (√6)² = 6π см²

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота