Объяснение: Обозначим расстояние от точки до плоскости ВО, наклонные АВ и ВС. Рассмотрим ∆АВО и ∆ВСО. Они прямоугольные где АО, ВО, СО - катеты, а АВ и ВС- гипотенузы. Также в них ВО - общий катет, и угол А=углу С=60°. Эти треугольники равны по катету и острому углу, поэтому АО=ОС и АВ=ВС. Соответственно ∆АВС- равнобедренный, где АО=СО. Рассмотрим ∆АВО, он прямоугольный. В нём угол АОВ=90°, угол А=60°. В прямоугольном треугольнике сумма острых углов составляет 90°, поэтому угол АВО=углу СВО=90-60=30°. Катет лежащий напротив него равен половине гипотенузы, поэтому катет АО=СО=½×АВ. Пусть АО=х, тогда АВ=2х. Составим уравнение используя теорему Пифагора:
АВ²-АО²=ВО²
(2х)²-х²=10²
4х²-х²=100
3х²=100
х²=100/3
х=√(100/3)
х=10/√3
Итак: АО=СО=10/√3см, тогда
АВ=ВС=10√3×2=20√3см
Так как угол В между наклонными составляет 30°, найдём АС, по теореме косинусов:
Сумма углов Δ ACD 180°, угол АСD = 90°( по условию), угол D = 60°, тогда угол САD = 180° - 90° - 60° = 30°. ΔACD - прямоугольный треугольник. По свойству прямоугольного треугольника сторона CD, которая лежит против угла 30° равна половине гипотенузы AD. AD = 2CD. Диагональ делит угол А пополам, значит угол А = 60°, трапеция АВСD - равнобокая, боковые стороны равны AC = CD. рассмотрим Δ АВС , угол САВ = 30°, угол ВСА = 30° ( как угол при параллельных прямых и секущей), Δ АВС - равнобедренный, т.е. АВ = ВС. P = AB + BC + CD + AD = 5X, X = 20 :5 = 4 cм, средняя линия трапеции равна полусумме оснований ВС = 4 см, АD = 2·4 = 8 см (4 + 8)/2 = 6 см ответ 6 см
ответ: АС=6√10см
Объяснение: Обозначим расстояние от точки до плоскости ВО, наклонные АВ и ВС. Рассмотрим ∆АВО и ∆ВСО. Они прямоугольные где АО, ВО, СО - катеты, а АВ и ВС- гипотенузы. Также в них ВО - общий катет, и угол А=углу С=60°. Эти треугольники равны по катету и острому углу, поэтому АО=ОС и АВ=ВС. Соответственно ∆АВС- равнобедренный, где АО=СО. Рассмотрим ∆АВО, он прямоугольный. В нём угол АОВ=90°, угол А=60°. В прямоугольном треугольнике сумма острых углов составляет 90°, поэтому угол АВО=углу СВО=90-60=30°. Катет лежащий напротив него равен половине гипотенузы, поэтому катет АО=СО=½×АВ. Пусть АО=х, тогда АВ=2х. Составим уравнение используя теорему Пифагора:
АВ²-АО²=ВО²
(2х)²-х²=10²
4х²-х²=100
3х²=100
х²=100/3
х=√(100/3)
х=10/√3
Итак: АО=СО=10/√3см, тогда
АВ=ВС=10√3×2=20√3см
Так как угол В между наклонными составляет 30°, найдём АС, по теореме косинусов:
АС²=АB²+BC²-2×AB×BC×cosB=
=(20√3)²+(20√3)²-2×(20√3²)×cos30°=
=400×3+400×3-2×400×3×√3/2=
=1200+1200-1200√3=2400-1200×1,7=
=2400-2040=360
АС=√360=6√10см