Боковыми гранями правильной усеченной пирамиды являются равные равнобедренные трапеции. Для нахождения площади боковой поверхности нужно найти высоту этих трапеций.
Проведем из вершин В и В1 оснований пирамиды высоты (медианы) ВН и В1М. В треугольнике АВС т.О - центр вписанной окружности и делит ВН в отношении 2:1, считая от вершины (по свойству медиан). ОН=ВН:3=АВ•sin60°:6. ОH=6•√3:2):3.=√3
Аналогично находим длину МО1 в меньшем основании А1В1С1. Отрезок МО1=(√3)/3.
По т. о 3х- перпендикулярах МН⊥АС и является высотой трапеции АА1С1С.
Площадь боковой поверхности данной пирамиды Ѕ(ус.пир.)=3•Ѕ(АА1С1С)=3•МН•(А1С1+АС):2.
Ѕ(ус.пир.)=3•(4:√3)•8:2=16√3 см²
————
Для нахождения высоты полной пирамиды РАВС, из которой получена данная усеченная пирамида, рассмотрим ∆ РОН и ∆ МНК. Они прямоугольные, имеют общий острый угол при вершине Н, ⇒
Вместо того, чтобы проводить отрезок CM (см. чертеж), я построил окружность на AC, как на диаметре. Середина AC - точка N - это центр этой окружности. Эта окружность проходит через все точки, из которых AC видна под прямым уголом, в частности - через точки D и F (основание высоты, в решении не нужна :) ).
Отрезок DE из условия является касательной к это окружности в точке D, так как ND II CB, как средняя линия треугольника ABC, то есть DE перпендикулярно радиусу ND.
В том числе эта окружность пересекает AE в точке K (из неё AC тоже видна под прямым углом, то есть ∠CKA = 90°). Я провожу отрезки CK и KM (M - середина DE), не предполагая, что они лежат на одной прямой. Для того, чтобы это "случилось", необходимо, чтобы ∠EKM = 90°. Вот это я и буду доказывать.
Треугольники AED и DKE подобны по 2 углам (один угол общий, а ∠KAD = ∠KDE, поскольку один угол вписаный, а другой лежит между касательной и секущей, и оба измеряются половиной дуги DK.
ND делит отрезок AE пополам (как средняя линия тр-ка ABC, ND делит пополам любую чевиану из вершины A), то есть Q - середина AE. Точки Q и M являются соответственными точками двух подобных треугольников, поэтому ∠QDE = ∠MKE = 90° чтд.
Если слова "являются соответственными точками" не понятны, то можно и так сказать - треугольники QDE и MKE подобны по двум пропорциональным сторонам и общему углу: QE и ME являются половинами сторон подобных треугольников AED и DKE, поэтому QE/ME = AE/ED = ED/EK;
Боковыми гранями правильной усеченной пирамиды являются равные равнобедренные трапеции. Для нахождения площади боковой поверхности нужно найти высоту этих трапеций.
Проведем из вершин В и В1 оснований пирамиды высоты (медианы) ВН и В1М. В треугольнике АВС т.О - центр вписанной окружности и делит ВН в отношении 2:1, считая от вершины (по свойству медиан). ОН=ВН:3=АВ•sin60°:6. ОH=6•√3:2):3.=√3
Аналогично находим длину МО1 в меньшем основании А1В1С1. Отрезок МО1=(√3)/3.
Из т.М опустим перпендикуляр МК на ОН.
НК= НО-МО1=√3-(√3)/3= (2√3)/3
МК - катет прямоугольного треугольника МКН с гипотенузой МН=НК:cos ∠МНК=[(2√3):3]:1/2=4/√3 .
По т. о 3х- перпендикулярах МН⊥АС и является высотой трапеции АА1С1С.
Площадь боковой поверхности данной пирамиды Ѕ(ус.пир.)=3•Ѕ(АА1С1С)=3•МН•(А1С1+АС):2.
Ѕ(ус.пир.)=3•(4:√3)•8:2=16√3 см²
————
Для нахождения высоты полной пирамиды РАВС, из которой получена данная усеченная пирамида, рассмотрим ∆ РОН и ∆ МНК. Они прямоугольные, имеют общий острый угол при вершине Н, ⇒
∆ РОН ~∆ МНК. k=НО:НК=√3:(2√3)/3=3/2
РО:МК=3/2.
МК=МН•sin60°=(4/√3 )•√3/2=2 см ⇒
PO=3 см
Вместо того, чтобы проводить отрезок CM (см. чертеж), я построил окружность на AC, как на диаметре. Середина AC - точка N - это центр этой окружности. Эта окружность проходит через все точки, из которых AC видна под прямым уголом, в частности - через точки D и F (основание высоты, в решении не нужна :) ).
Отрезок DE из условия является касательной к это окружности в точке D, так как ND II CB, как средняя линия треугольника ABC, то есть DE перпендикулярно радиусу ND.
В том числе эта окружность пересекает AE в точке K (из неё AC тоже видна под прямым углом, то есть ∠CKA = 90°). Я провожу отрезки CK и KM (M - середина DE), не предполагая, что они лежат на одной прямой. Для того, чтобы это "случилось", необходимо, чтобы ∠EKM = 90°. Вот это я и буду доказывать.
Треугольники AED и DKE подобны по 2 углам (один угол общий, а ∠KAD = ∠KDE, поскольку один угол вписаный, а другой лежит между касательной и секущей, и оба измеряются половиной дуги DK.
ND делит отрезок AE пополам (как средняя линия тр-ка ABC, ND делит пополам любую чевиану из вершины A), то есть Q - середина AE. Точки Q и M являются соответственными точками двух подобных треугольников, поэтому ∠QDE = ∠MKE = 90° чтд.
Если слова "являются соответственными точками" не понятны, то можно и так сказать - треугольники QDE и MKE подобны по двум пропорциональным сторонам и общему углу: QE и ME являются половинами сторон подобных треугольников AED и DKE, поэтому QE/ME = AE/ED = ED/EK;