Через 1 точку можно провести бесконечно прямых, через 3 - только одну (аксиома) Вот по поводу трех прямых: если три точки лежат на одной прямой, то другую провести нельзя, если они не лежат на одной прямой, то каждая пара точек задаёт единственную прямую, то есть всего 3 различных прямых.
ответ на часть 2:
Ни одной общей точки. Если параллельные прямые.
Одна общая точка. Если пересекающиеся прямые.
Бесконечно много общих точек. Если совпадающие прямые.
и на часть 3:
Отрезком называется часть прямой, которая содержит две разные точки A и С этой прямой
Пусть О1, О2 и О3 - центры заданных окружностей с радиусами 12, 12 и 1 см.
Стороны треугольника с вершинами в этих точках равны 24 и 2 по 13 см.
Косинус угла α при вершинах О1 иО2 равен:
cos α = (24² + 13² - 13²)/(2*24*13) = 12/13.
Находим стороны АВ и АС треугольника АВС.
АВ = АС = √(12² + 12² -2*12*12*(12/13)) = 12√(2/13) см.
Сторона ВС из подобия равна: 24*(1/13) = 24/13 см.
Высота h треугольника АВС к стороне ВС равна:
h = √(АВ² - (ВС/2)²) = √((144*2/13) - (144/169)) = (12/13)√(26 - 1) = 60/13.
Площадь треугольника АВС равна:
S(АВС) = (1/2)*(24/13)*(60/13) = 720/169.
Радиус R окружности, описанной около треугольника ABC, равен:
R = (abc)/(4S) = ((12√(2/13))-(12√(2/13))*(24/13))/(4*(720/169)) = 1728/720 = 2,4 см.
Через 1 точку можно провести бесконечно прямых, через 3 - только одну (аксиома) Вот по поводу трех прямых: если три точки лежат на одной прямой, то другую провести нельзя, если они не лежат на одной прямой, то каждая пара точек задаёт единственную прямую, то есть всего 3 различных прямых.
ответ на часть 2:
Ни одной общей точки. Если параллельные прямые.
Одна общая точка. Если пересекающиеся прямые.
Бесконечно много общих точек. Если совпадающие прямые.
и на часть 3:
Отрезком называется часть прямой, которая содержит две разные точки A и С этой прямой