Образующая усеченного конуса равна 2√3 см, а радиус меньшего основания √3 см. Найдите радиус сферы, описанной вокруг данного усеченного конуса, если угол между его образующей и большим основанием равен 60 °.
Объяснение:
В осевом сечении данной комбинации тел получается равнобедренная трапеция , вписанная в окружность.
АВСМ-равнобедренная трапеция , О-центр описанной окружности., АВ=СМ=2√3, ВС=2√3, ∠СМА=60°. Найти R.
Пусть ВН⊥АМ, СК⊥АМ.Тогда НВСК-прямоугольник, ВС=НК=2√3 см
ΔСКМ прямоугольный. cos60°=КМ/(2√3) , КМ=√3 см ⇒АН=√3см,
sin60°=CК/(2√3) , СК=3 см .
Найдем АК=АН+НК=3√3 (см) и АМ=2√3+2√3=4√3 (см).
ΔАСК-прямоугольный , по т. Пифагора
АС=√ ( (3√3)²+3²)=√36=6 (см)
ΔАСМ , вычислим АМ² , АС²+СМ², затем сравним.
АМ²=(4√3)²=48,
АС²+СМ²=6²+(2√3)²=36+12=48.
Получили АМ²=АС²+СМ² ⇒ ΔАСМ-прямоугольный , по т. обратной т. Пифагора и ∠АСМ=90° ⇒ центр описанной окружности лежит на середине АМ ⇒
Мне очень понравился коротенький документ в предыдущем решении, я вдохновился :) и сделал свой вариант. Пусть начало координат находится в центре основания, а вершины лежат в точках А(1,0,0) B(0,-1,0) C(-1,0,0) D(0,1,0) S(0,0,1); ребра такой пирамиды равны √2, а не 1, но угол между плоскостями от этого не зависит. Плоскость SAD отсекает на осях отрезки (ориентированные) 1,1,1, поэтому её уравнение x + y + z = 1; перпендикулярный этой плоскости вектор (1,1,1). Для плоскости BCF известно, что она отсекает на оси X отрезок -1 и на оси Y тоже. Осталось выяснить, через какую точку на оси Z она проходит. В треугольнике BSD BF и SO – медианы, поэтому точка их пересечения отсекает от SO отрезок SO/3 = 1/3, и BF принадлежит плоскости BCF, то есть эта плоскость проходит через точку (0,0,1/3). Отсюда уравнение плоскости BCF: -x - y + 3z = 1; перпендикулярный ей вектор (-1,-1, 3); Угол между векторами (1,1,1) и (-1,-1,3) и есть искомый угол. Модули векторов √3 и √11; скалярное произведение (-1 -1 + 3) =1; поэтому косинус угла равен 1/√33;
Примечание Если известно, что плоскость проходит через точки (a,0,0) (0,b,0) (0,0,c), то уравнение плоскости x/a + y/b + z/c = 1; доказать это элементарно, достаточно убедиться, что все три точки удовлетворяют этому уравнению, а через три точки можно провести только одну плоскость. Это называется уравнение плоскости "в отрезках".
Образующая усеченного конуса равна 2√3 см, а радиус меньшего основания √3 см. Найдите радиус сферы, описанной вокруг данного усеченного конуса, если угол между его образующей и большим основанием равен 60 °.
Объяснение:
В осевом сечении данной комбинации тел получается равнобедренная трапеция , вписанная в окружность.
АВСМ-равнобедренная трапеция , О-центр описанной окружности., АВ=СМ=2√3, ВС=2√3, ∠СМА=60°. Найти R.
Пусть ВН⊥АМ, СК⊥АМ.Тогда НВСК-прямоугольник, ВС=НК=2√3 см
ΔСКМ прямоугольный. cos60°=КМ/(2√3) , КМ=√3 см ⇒АН=√3см,
sin60°=CК/(2√3) , СК=3 см .
Найдем АК=АН+НК=3√3 (см) и АМ=2√3+2√3=4√3 (см).
ΔАСК-прямоугольный , по т. Пифагора
АС=√ ( (3√3)²+3²)=√36=6 (см)
ΔАСМ , вычислим АМ² , АС²+СМ², затем сравним.
АМ²=(4√3)²=48,
АС²+СМ²=6²+(2√3)²=36+12=48.
Получили АМ²=АС²+СМ² ⇒ ΔАСМ-прямоугольный , по т. обратной т. Пифагора и ∠АСМ=90° ⇒ центр описанной окружности лежит на середине АМ ⇒
R=2√3 cv
Пусть начало координат находится в центре основания, а вершины лежат в точках
А(1,0,0) B(0,-1,0) C(-1,0,0) D(0,1,0) S(0,0,1); ребра такой пирамиды равны √2, а не 1, но угол между плоскостями от этого не зависит.
Плоскость SAD отсекает на осях отрезки (ориентированные) 1,1,1, поэтому её уравнение x + y + z = 1; перпендикулярный этой плоскости вектор (1,1,1).
Для плоскости BCF известно, что она отсекает на оси X отрезок -1 и на оси Y тоже. Осталось выяснить, через какую точку на оси Z она проходит.
В треугольнике BSD BF и SO – медианы, поэтому точка их пересечения отсекает от SO отрезок SO/3 = 1/3, и BF принадлежит плоскости BCF, то есть эта плоскость проходит через точку (0,0,1/3).
Отсюда уравнение плоскости BCF: -x - y + 3z = 1; перпендикулярный ей вектор (-1,-1, 3);
Угол между векторами (1,1,1) и (-1,-1,3) и есть искомый угол.
Модули векторов √3 и √11; скалярное произведение (-1 -1 + 3) =1;
поэтому косинус угла равен 1/√33;
Примечание
Если известно, что плоскость проходит через точки (a,0,0) (0,b,0) (0,0,c), то уравнение плоскости x/a + y/b + z/c = 1; доказать это элементарно, достаточно убедиться, что все три точки удовлетворяют этому уравнению, а через три точки можно провести только одну плоскость. Это называется уравнение плоскости "в отрезках".