Найти площадь прямоугольного треугольника в параллелограмме со сторонами 9 см она является гипотенузой прямоугольного треугольника и стороной 13 см известно что в параллелограмме проведена высота это и является неизвестный катет а известный катет равен 6 см следовательно ан=6 а ав=9 и чему равна высота в параллелограмме?
Треугольник самая распространенная фигура. В лесу, когда мы смотрим на ель и ее тень, то перед нами представляется равнобедренный треугольник.
На магических символах.
Предметы обихода: треуголки, вырезы на одежде.
Музыкальные инструменты.
ТРЕУГОЛЬНИК, самозвучащий музыкальный инструмент — стальной прут, согнутый в виде треугольника, по которому ударяют палочкой. Применяется в оркестрах и инструментальных ансамблях.
“Египетский” треугольник
Среди бесконечного количества возможных прямоугольных треугольников, особый интерес всегда вызывали так называемые «пифагоровы треугольники», стороны которых являются целыми числами. Несомненно, «пифагоровы треугольники» также относятся к разряду «сокровищ геометрии», а поиски таких треугольников представляют одну из из интереснейших страниц в истории математики. Наиболее широко известным из них является прямоугольный треугольник со сторонами 4, 3 и 5. Он назывался также «священным» или «египетским», так как он широко использовался в египетской культуре
Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
= 18 + 4√3