Угол равен 45 градусов, а высота проведена из вершины тупого угла на сторону параллелограмма. Получается треугольник, содержащий эту высоту и угол в 45 градусов. В треугольнике, как известно, 3 угла. Т.к. высота опускается (проводится) под прямым углом, то он равен 90 градусов. Имеем 2 угла: 45 градусов и 90 градусов. Найдем третий угол: 180-45-90=45 градусов. Получается, что у нас есть 2 одинаковых угла, значит, треугольник (в котором лежат эти углы и принадлежит высота) равнобедренный. Значит, высота равна половина стороны параллелограмма, на которую она опущена. Т.к. высота равна 3, то и половина стороны равна 3. Вся сторона параллелограмма состоит из двух таких равных частей, поэтому: 3+3=6
Непосредственно следует из теоремы трех перпендикуляров : AD проекция наклонной PD на плоскости треугольника ABC и BC ⊥ PD ⇒ BC ⊥ AD . 2. --- AC ∈ α ( сторона (здесь основание) AC треугольника ABC лежит в плоскости α ; |AB| = |BC| = 26 см ( а не AB| = |BC| = 26 см ) ; |AC| = 48 см ; BO ⊥ α , O ∈ α ; OP ⊥ AC .
BP - ?
OP проекция наклонной на плоскости α . OP ⊥ AC ⇒ BP ⊥ AC (по обратной теореме трех перпендикуляров) * BP высота равнобедренного треугольника ABC провед. к основ . AC* Но треугольник ABC равнобедренный, поэтому BP еще и медиана т.е. AP =CP =AC/2 =48/2 =24 (см) . Из Δ ABP по теореме Пифагора : BP =√ (AB² - AP² ) = √ (26² - 24² ) =√ (26 - 24 )(26 + 24) =√ (2*50 )=10 (см) .
---
PA ⊥ (ABC) ;
D ∈ [BC] ;
PD ⊥ BC .
Док-ать AD ⊥ BC ( AD - высота треугольника ABC) ?
Непосредственно следует из теоремы трех перпендикуляров :
AD проекция наклонной PD на плоскости треугольника ABC и
BC ⊥ PD ⇒ BC ⊥ AD .
2.
---
AC ∈ α ( сторона (здесь основание) AC треугольника ABC лежит в плоскости α ;
|AB| = |BC| = 26 см ( а не AB| = |BC| = 26 см ) ;
|AC| = 48 см ;
BO ⊥ α , O ∈ α ;
OP ⊥ AC .
BP - ?
OP проекция наклонной на плоскости α .
OP ⊥ AC ⇒ BP ⊥ AC (по обратной теореме трех перпендикуляров)
* BP высота равнобедренного треугольника ABC провед. к основ . AC*
Но треугольник ABC равнобедренный, поэтому BP еще и медиана
т.е. AP =CP =AC/2 =48/2 =24 (см) .
Из Δ ABP по теореме Пифагора :
BP =√ (AB² - AP² ) = √ (26² - 24² ) =√ (26 - 24 )(26 + 24) =√ (2*50 )=10 (см) .
ответ : 10 см .