Найти площадь сечения куба, проходящие через точку b1 и середину ad и ab Сечение я нашел, это трапеция, но я не могу понять,как найти высоту, что бы потом найти площадь ответ должен быть 9*a^2/8
Площадь АСК = S/2; площадь CNK = (1/4)*(S/2) = S/8 (ну, я один раз это объясню - треугольники АСК и NCК имеют общую высоту СК и сторона КN = AК/4, поэтому площадь NCK = 1/4 от площади АСК)
Площадь ACN = 3*S/8;
Площадь АЕР = (3/5)^2 от площади АСК, поскольку это подобные треугольники, и стороны относятся, как 3/5, то есть площадь АЕР = (3/5)^2*(S/2).
Поэтому площадь четырехугольника EPNC равна 3*S/8 - (3/5)^2*(S/2); потом сосчитаем, пока же заметим, что нам осталось найти площадь треугольника NPD, которая равна (3/5)^2 от площади NCK (подобие и отношение сторон), то есть составляет (3/5)^2*S/8; собираем всё это, получаем, что искомая площадь треугольника CED, и, что то же самое - треугольника BED, равна
3*S/8 - (3/5)^2*(S/2) + (3/5)^2*S/8 = S*6/25;
а можно и так, это побыстрее - Sаbе = S*3/5; Saed = (9/25)*S; Sbed = S*(3/5 - 9/25) =S*6/25.
да, забыла на S на 20 заменить :))) Sbed = 6*20/25 = 24/5 = 4,8.
Треугольник АВС - угол В=90°, АС-гипотенуза. Вписанная окружность с центром О касается в точке К гипотенузы АС, в точке Н катета ВС и в точке М катета АВ, радиусы ОК=ОН=ОМ. АК:КС=3:10 и ВО=√8. Решение: Применим свойства касательной к окружности: 1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания, т.е.ОМ⊥АВ, ОН⊥ВС, ОК⊥АС. Получается, что ВМОН - квадрат с диагональю ВО, тогда сторона квадрата ВМ=ВН=ОМ=ОН=ВО/√2=√8/√2=√4=2. 2. Отрезки касательных, проведенных из одной точки, равны. Если обозначим длину гипотенузы через 13х, то получается АМ=АК=3х, СК=СН=10х, ВМ=ВН=2. Тогда АВ=АМ+ВМ=3х+2, ВС=ВН+СН=10х+2 По т.Пифагора АС²=АВ²+ВС² (13х)²=(3х+2)²+(10х+2)² 169х²=9х²+12х+4+100х²+40х+4 60х²-52х-8=0 15х²-13х-2=0 D=169+120=289=17² х=(13+17)/30=1 Значит стороны треугольника АВ=5, ВС=12, АС=13 Площадь треугольника S=АВ*ВС/2=5*12/2=30
Все обозначения - на чертеже,
х/b = n/m (из того, что AN - биссектриса)
x/b = h1/h (из подобия треугольников APD и AKB)
NP/NK = n/m (из подобия EPN и NKB)
NK = h/4; NP = 3*h/4 - h1;
Итак, получили
h1/h = (3*h/4 - h1)/(h/4) = (3 - 4*h1)/h = 3 - 4*(h1/h);
h1/h = 3/5;
Пусть площадь АВС S, тогда
Площадь АСК = S/2; площадь CNK = (1/4)*(S/2) = S/8 (ну, я один раз это объясню - треугольники АСК и NCК имеют общую высоту СК и сторона КN = AК/4, поэтому площадь NCK = 1/4 от площади АСК)
Площадь ACN = 3*S/8;
Площадь АЕР = (3/5)^2 от площади АСК, поскольку это подобные треугольники, и стороны относятся, как 3/5, то есть площадь АЕР = (3/5)^2*(S/2).
Поэтому площадь четырехугольника EPNC равна 3*S/8 - (3/5)^2*(S/2); потом сосчитаем, пока же заметим, что нам осталось найти площадь треугольника NPD, которая равна (3/5)^2 от площади NCK (подобие и отношение сторон), то есть составляет (3/5)^2*S/8; собираем всё это, получаем, что искомая площадь треугольника CED, и, что то же самое - треугольника BED, равна
3*S/8 - (3/5)^2*(S/2) + (3/5)^2*S/8 = S*6/25;
а можно и так, это побыстрее - Sаbе = S*3/5; Saed = (9/25)*S; Sbed = S*(3/5 - 9/25) =S*6/25.
да, забыла на S на 20 заменить :))) Sbed = 6*20/25 = 24/5 = 4,8.
Вписанная окружность с центром О касается в точке К гипотенузы АС, в точке Н катета ВС и в точке М катета АВ, радиусы ОК=ОН=ОМ.
АК:КС=3:10 и ВО=√8.
Решение: Применим свойства касательной к окружности:
1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания, т.е.ОМ⊥АВ, ОН⊥ВС, ОК⊥АС. Получается, что ВМОН - квадрат с диагональю ВО, тогда сторона квадрата ВМ=ВН=ОМ=ОН=ВО/√2=√8/√2=√4=2.
2. Отрезки касательных, проведенных из одной точки, равны. Если обозначим длину гипотенузы через 13х, то получается АМ=АК=3х, СК=СН=10х, ВМ=ВН=2.
Тогда АВ=АМ+ВМ=3х+2,
ВС=ВН+СН=10х+2
По т.Пифагора АС²=АВ²+ВС²
(13х)²=(3х+2)²+(10х+2)²
169х²=9х²+12х+4+100х²+40х+4
60х²-52х-8=0
15х²-13х-2=0
D=169+120=289=17²
х=(13+17)/30=1
Значит стороны треугольника АВ=5, ВС=12, АС=13
Площадь треугольника S=АВ*ВС/2=5*12/2=30