РЕШЕНИЕ: Если через х обозначить меньшую сторону трапеции, то вся площадь будет состоять из суммы двух площадей фигур, сотставляющих данную прямоугольную трапецию: 1) площади прямоугольника = 9х 2) площади (прилегающаго к прямоугольнику) треугльника = 0,5*9*(20 - х) = = 4,5*(20-х) = 90 - 4,5х Итого, общая площадь равна = 9х + 90 - 4,5х = 90 - 4,5х. Величину х найдем, используя теорему Пифагора: 9^2 + (20-x)^2 = 15^2, 81 + (20-x)^2 = 225, (20-x)^2 = 225-81 =144 = (+,-12)^2, a) 20-x = 12, x = 8 b) 20 - x = -12, x = 32, что отбрасываем, т. к. по условию х - меньшее основание, а большее равно 20. Окончательно: площадь = 90 - 4,5х = 90 - 4,5*8 = 54 (см. кв)
1. Прямая FD1 принадлежит плоскости AA1D Прямая AD так же принадлежит этой плоскости, но кроме того, она принадлежит и плоскости ABD, а значит, найдя точку пересечения этих прямых (а они будут пересекаться так как лежат в одной плоскости и не параллельны) мы и найдем точку пересечения FD1 с плоскостью ABD. На рисунке это точка прощения у меня довольно криво) 2. Так как плоскости A1B1C1 и ABC параллельны, то и линии пересечения этих плоскостей третьей параллельны (свойство параллельных плоскостей) Т.к. мы уже нашли точку пересечения плоскости FB1D1 с плоскостью ABD (предыдущее задание), то проводим параллельную прямую через нее (у меня опять же все криво, за что еще раз прощения)
Если через х обозначить меньшую сторону трапеции, то вся площадь будет состоять из суммы двух площадей фигур, сотставляющих данную прямоугольную трапецию:
1) площади прямоугольника = 9х
2) площади (прилегающаго к прямоугольнику) треугльника = 0,5*9*(20 - х) =
= 4,5*(20-х) = 90 - 4,5х
Итого, общая площадь равна = 9х + 90 - 4,5х = 90 - 4,5х.
Величину х найдем, используя теорему Пифагора: 9^2 + (20-x)^2 = 15^2,
81 + (20-x)^2 = 225, (20-x)^2 = 225-81 =144 = (+,-12)^2,
a) 20-x = 12, x = 8
b) 20 - x = -12, x = 32, что отбрасываем, т. к. по условию х - меньшее основание, а большее равно 20.
Окончательно: площадь = 90 - 4,5х = 90 - 4,5*8 = 54 (см. кв)
Прямая AD так же принадлежит этой плоскости, но кроме того, она принадлежит и плоскости ABD, а значит, найдя точку пересечения этих прямых (а они будут пересекаться так как лежат в одной плоскости и не параллельны) мы и найдем точку пересечения FD1 с плоскостью ABD. На рисунке это точка прощения у меня довольно криво)
2. Так как плоскости A1B1C1 и ABC параллельны, то и линии пересечения этих плоскостей третьей параллельны (свойство параллельных плоскостей)
Т.к. мы уже нашли точку пересечения плоскости FB1D1 с плоскостью ABD (предыдущее задание), то проводим параллельную прямую через нее (у меня опять же все криво, за что еще раз прощения)