- найти площу наралелограма, сторони якого дорівнюють 25 см і 7 см, а одна з діа
сторони.
Б. Знайти площу трапеції, основи якої дорівнюють 7 см і 9 см, а бічна сторона дов
основою кут 45°.
2 варіант
1. Основи трапеції дорівнюють 8 см і 4 см, а її висота – 3 см. Знайти площу трапеції.
2. Основа рівнобедреного трикутника дорівнює 16 см, а бічна сторона — 17 см. Знайти пло
3. Знайти пошу ромба, сторона якого дорівнює 92 см, а один з кутів – 45°.
4. Кут між. Висотами паралелограма, проведеними з вершини тупого кута дорівнює 60°.
якщо його сторони 8 см і 14 см.
АК=2
ВК=8
1- рассмотрим прямоугольный треугольник AOB. У него АВ=10см (т. к. АК+ВК=2+8=10). А катеты АО и ВО примем АО=х, ВО= у
2- из теоремы пифагора (квадрат гипотенузы (АВ^2) равен сумме квадратов катетов (АО^2+ВО^2)) ( X)^2 означает X в квадрате
т. е. АВ^2=AO^2+BO^2. подставим нашу замену получим 10^2=x^2+y^2, 100=x^2+y^2
3- рассмотрим прямоугольный треугольник AOK. Его стороны это АК=2, ОК и АО=x
в нем тоже по теореме пифагора получаем: AO^2=AK^2+OK^2, подставим значения получим x^2 = 2^2 + OK^2 x^2 = 4 + OK^2
4- рассмотрим прямоугольный треугольник BOK. Его стороны это BК=8, ОК и BО=y
в нем тоже по теореме пифагора получаем: BO^2=BK^2+OK^2, подставим значения получим y^2 = 8^2 + OK^2 y^2 =64 + OK^2
Рассмотрим уравнения из пункта 3 и 4
x^2 = 4 + OK^2
y^2 =64 + OK^2
Выразим из каждого OK^2, получим
OK^2=x^2-4
OK^2=y^2-64
получаем
x^2-4=y^2-64
x^2=y^2-60
Решим теперь систему уравнений
x^2=y^2-60
100=x^2+y^2 (уравнение из пункта 2)
Подставим полученное x^2 в уравнение из пункта 1, получим систему
x^2=y^2-60
100=y^2-60+y^2
x^2=y^2-60
2*y^2=160
x^2=y^2-60
y^2=80
Теперь подставим y^2=80 в первое уравнение системы, получим систему
x^2=80-60
y^2=80
x^2=20
y^2=80
__
x=2 V 5 (два корня из пяти)
__
y=4 V 5 (четыре корня из пяти)
ответ: __ __ __ __
Диагонали ромба это АС=2*x = 2*2 V 5 = 4V 5 и BD=2*y= 2*4 V 5 = 8 V 5
Обозначим их основания a, b, c.
Площади подобных треугольников относятся как квадрат коэффициента подобия.
Sa/Sb =3/12 => a/b =√(1/4) =1/2
Sb/Sc =12/27 => b/c =√(4/9) =2/3
Основание b лежит на основании исходного треугольника, основания a и с отложены на основании исходного треугольника как противоположные стороны параллелограммов. Основание исходного треугольника равно a+b+c.
a/(a+b+c) = 1/(1+2+3) =1/6 => Sa/S =(1/6)^2 <=> S=3*36 =108