Середину отрезка с заданными координатами начала и конца находят как среднее арифметическое одноименных координат, то есть координаты точки М((3+1)/2;(-2+6)/2) или М(2;2). Длина (модуль) CM=√[(Xm-Xc)²+(Ym-Yc)²] или СМ=√[(2-5)²+(2+2)²]=√25=5. Признак параллелограмма: "Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм". Сторона (вектор) АВ{Xb-Xa;Yb-Ya} или AB{3-1;6+2}. AB{2;8} модуль (длина) |AB|=√(2²+8²)=√68. Сторона (вектор) СD{Xd-Xc;Yd-Yc} или CD{7-5;6+2}. CD{2;8} модуль (длина) |CD|=√(2²+8²)=√68. Итак, противоположные стороны параллелограмма AB и CD равны по модулю и параллельны (два вектора параллельны, если отношения их координат равны, а у нас их отношение равно 1). Следовательно, АВСD - параллелограмм, что и требовалось доказать.
1) Если параллелограмм можно вписать в окружность, то он квадрат.
Утверждение неверное.
Если четырёхугольник вписан в окружность, то сумма его противоположных углов, равна 180°. Поскольку противоположные углы параллелограмма равны, то каждый из них равен 90°. Поэтому если параллелограмм можно вписать в окружность, то он может быть прямоугольником или квадратом, то есть не всегда квадрат.
2) Средняя линия треугольника делит его площадь пополам.
Утверждение неверное.
Средняя линия треугольника делит его площадь в отношении 1:3, считая от вершины. (Пусть а-основание, h - высота, опущенная на сторону а. Тогда площадь треугольника S = 0.5 ah. Средняя линия, параллельная стороне а, равна 0,5а, а высота, опущенная из вершины треугольника на среднюю линию, равна 0,5h. Тогда площадь отсекаемого средней линией треугольника равна s = 0.5 · 0.5 a · 0.5h = 0.125ah, то есть s = 0,25 S. Площадь другой отсечённой части, представляющей собой трапецию, равна S - 0.25S = 0.75S.
0,25S : 0.75S = 1:3)
3) Если два угла вписаны в одну окружность и опираются на одну ее хорду, то они равны.
Утверждение неверное.
Если два угла вписаны в одну окружность и опираются на одну хорду, то они равны, если их вершины находятся по одну сторону от хорды, если же их вершины находятся по разные стороны от хорды, и один из углов равен α, то другой угол равен 180° - α.
4) Если в равнобокую трапецию можно вписать окружность, то ее средняя линия равна боковой стороне.
Утверждение верное.
Если в четырёхугольник можно вписать окружность, то суммы противоположных сторон его равны между собой.
Пусть боковая сторона трапеции равна а, тогда сумма боковых сторон равна 2а, и сумма оснований равна 2а. А средняя линия равна полусумме оснований. то есть а.
Длина (модуль) CM=√[(Xm-Xc)²+(Ym-Yc)²] или
СМ=√[(2-5)²+(2+2)²]=√25=5.
Признак параллелограмма: "Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм".
Сторона (вектор) АВ{Xb-Xa;Yb-Ya} или AB{3-1;6+2}.
AB{2;8} модуль (длина) |AB|=√(2²+8²)=√68.
Сторона (вектор) СD{Xd-Xc;Yd-Yc} или CD{7-5;6+2}.
CD{2;8} модуль (длина) |CD|=√(2²+8²)=√68.
Итак, противоположные стороны параллелограмма AB и CD равны по модулю и параллельны (два вектора параллельны, если отношения их координат равны, а у нас их отношение равно 1).
Следовательно, АВСD - параллелограмм, что и требовалось доказать.
1) Если параллелограмм можно вписать в окружность, то он квадрат.
Утверждение неверное.
Если четырёхугольник вписан в окружность, то сумма его противоположных углов, равна 180°. Поскольку противоположные углы параллелограмма равны, то каждый из них равен 90°. Поэтому если параллелограмм можно вписать в окружность, то он может быть прямоугольником или квадратом, то есть не всегда квадрат.
2) Средняя линия треугольника делит его площадь пополам.
Утверждение неверное.
Средняя линия треугольника делит его площадь в отношении 1:3, считая от вершины. (Пусть а-основание, h - высота, опущенная на сторону а. Тогда площадь треугольника S = 0.5 ah. Средняя линия, параллельная стороне а, равна 0,5а, а высота, опущенная из вершины треугольника на среднюю линию, равна 0,5h. Тогда площадь отсекаемого средней линией треугольника равна s = 0.5 · 0.5 a · 0.5h = 0.125ah, то есть s = 0,25 S. Площадь другой отсечённой части, представляющей собой трапецию, равна S - 0.25S = 0.75S.
0,25S : 0.75S = 1:3)
3) Если два угла вписаны в одну окружность и опираются на одну ее хорду, то они равны.
Утверждение неверное.
Если два угла вписаны в одну окружность и опираются на одну хорду, то они равны, если их вершины находятся по одну сторону от хорды, если же их вершины находятся по разные стороны от хорды, и один из углов равен α, то другой угол равен 180° - α.
4) Если в равнобокую трапецию можно вписать окружность, то ее средняя линия равна боковой стороне.
Утверждение верное.
Если в четырёхугольник можно вписать окружность, то суммы противоположных сторон его равны между собой.
Пусть боковая сторона трапеции равна а, тогда сумма боковых сторон равна 2а, и сумма оснований равна 2а. А средняя линия равна полусумме оснований. то есть а.