∠А=∠Д и АВ=СД т. к. трапеция равнобедренная, ∠АЕВ=∠DFC=90°, а ∠А=∠Д поэтому ∠АВЕ=∠FCD ⇒ ΔАВЕ=ΔDCF.
(б) ∠А=∠Д, ∠Е=∠F, ∠В=∠С.
(с) Вид может быть разным, смотря как ВЫ начертите трапецию. Если у вас трапеция будет длиноватая, то это прямоугольник, если же получится так, что ЕВ=ВС=FC=EF, это квадрат.
(д) У нас ∠АВЕ=∠FCD, ВЕ и СF-высоты⇒∠В=∠Е=∠С=∠F=90°, т. е. ∠В=∠С, поэтому ∠АВС=∠ДСВ.
(е) У равнобокой трапеции есть свойство, это свойство и будет ВЫВОДОМ.
Вывод:
Углы при каждом основании равнобедренной трапеции равны.
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Объяснение:
Дано: ABCD-равнобедренная трапеция.
ВЕ и СF-высоты.
(а) Рассмотрим ΔАВЕ и ΔDCF.
∠А=∠Д и АВ=СД т. к. трапеция равнобедренная, ∠АЕВ=∠DFC=90°, а ∠А=∠Д поэтому ∠АВЕ=∠FCD ⇒ ΔАВЕ=ΔDCF.
(б) ∠А=∠Д, ∠Е=∠F, ∠В=∠С.
(с) Вид может быть разным, смотря как ВЫ начертите трапецию. Если у вас трапеция будет длиноватая, то это прямоугольник, если же получится так, что ЕВ=ВС=FC=EF, это квадрат.
(д) У нас ∠АВЕ=∠FCD, ВЕ и СF-высоты⇒∠В=∠Е=∠С=∠F=90°, т. е. ∠В=∠С, поэтому ∠АВС=∠ДСВ.
(е) У равнобокой трапеции есть свойство, это свойство и будет ВЫВОДОМ.
Вывод:
Углы при каждом основании равнобедренной трапеции равны.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²