а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.
б) Найдите угол между этой плоскостью и плоскостью основания АВС. Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ. Точки пресечения - это Д и Е. Примем длину отрезка АК за 1. Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3. Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1. Угол ЕАД равен 60 градусов (по заданию). По теореме косинусов
Находим гипотенузы в треугольниках АКД и АКЕ.
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов). Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти. Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД. Находим высоты в треугольниках АЕД и КЕД по формуле:
АЕ ДЕ АД p 2p S = 1 0.8694729 0.5773503 1.2234116 2.446823135 0.25 haе hде hад 0.5 0.57506 0.86603
КЕ ДЕ КД p 2p S = 1.4142136 0.869473 1.154701 1.719194 3.43839 0.501492 hке hде hкд 0.7092 1.15356 0.86861. Отношение высот hде и hде - это косинус искомого угла: cos α = 0.57506 / 1.15356 = 0.498510913. ответ: α = 1.048916149 радиан = 60.09846842°.
Угол В 90 градусов, значит угол А плюс Угол С = 180-90=90 градусов.
Сумма (уменьшенных в два раза биссектрисами) углов при вершинах А и С в треугольнике АОВ будет в два раза меньше, т.е. 90:2= 45 градусов.
Сумма углов в треугольнике = 180 градусам, тогда искомый угол АОВ будет равен 180-45=135 градусов.
Задача 2.
В задаче дано, что угол при вершине В равен 60 градусов, при этом DBA = 30 градусам (получается половина 60ти), получается, что DB - биссектриса. Особенным свойством биссектрисы является то, что каждая точка биссектрисы равноудалена от сторон угла. Расстояние до стороны ВА дано и равно 4 (отрезок DA), расстояние от точки Д до стороны СВ будет таким же, т.е. 4.
Задание 3(Первое фото)
Задание 4
67градусов и 30 минут=45 градусов + 22 градуса 30 минут.
1. Строите развернутый угол (180 градусов). С циркуля и линейки делите его пополам. Получаете угол в 90 градусов.
2. Аналогичным образом угол в 90 градусов делите пополам, получаете два смежных угла по 45.
3. Один из этих углов оставляете в покое, другой аналогично делите пополам. Это будут два угла по 22 градуса 30 минут.
4. Один из полученных маленьких углов и оставленный в покое угол в 45 градусов дадут в сумме 67 градусов 30 минут.
б) Найдите угол между этой плоскостью и плоскостью основания АВС.
Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ.
Точки пресечения - это Д и Е.
Примем длину отрезка АК за 1.
Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3.
Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1.
Угол ЕАД равен 60 градусов (по заданию).
По теореме косинусов
Находим гипотенузы в треугольниках АКД и АКЕ.
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов).
Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти.
Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД.
Находим высоты в треугольниках АЕД и КЕД по формуле:
АЕ ДЕ АД p 2p S =
1 0.8694729 0.5773503 1.2234116 2.446823135 0.25
haе hде hад
0.5 0.57506 0.86603
КЕ ДЕ КД p 2p S =
1.4142136 0.869473 1.154701 1.719194 3.43839 0.501492
hке hде hкд
0.7092 1.15356 0.86861.
Отношение высот hде и hде - это косинус искомого угла:
cos α = 0.57506 / 1.15356 = 0.498510913.
ответ: α = 1.048916149 радиан = 60.09846842°.
Задача 1.
Угол В 90 градусов, значит угол А плюс Угол С = 180-90=90 градусов.
Сумма (уменьшенных в два раза биссектрисами) углов при вершинах А и С в треугольнике АОВ будет в два раза меньше, т.е. 90:2= 45 градусов.
Сумма углов в треугольнике = 180 градусам, тогда искомый угол АОВ будет равен 180-45=135 градусов.
Задача 2.
В задаче дано, что угол при вершине В равен 60 градусов, при этом DBA = 30 градусам (получается половина 60ти), получается, что DB - биссектриса. Особенным свойством биссектрисы является то, что каждая точка биссектрисы равноудалена от сторон угла. Расстояние до стороны ВА дано и равно 4 (отрезок DA), расстояние от точки Д до стороны СВ будет таким же, т.е. 4.
Задание 3(Первое фото)
Задание 4
67градусов и 30 минут=45 градусов + 22 градуса 30 минут.
1. Строите развернутый угол (180 градусов). С циркуля и линейки делите его пополам. Получаете угол в 90 градусов.
2. Аналогичным образом угол в 90 градусов делите пополам, получаете два смежных угла по 45.
3. Один из этих углов оставляете в покое, другой аналогично делите пополам. Это будут два угла по 22 градуса 30 минут.
4. Один из полученных маленьких углов и оставленный в покое угол в 45 градусов дадут в сумме 67 градусов 30 минут.