Центр окружности, проходящей через точки А и В, равноудален от этих точек. А все точки, равноудаленные от концов отрезка АВ, лежат на серединном перпендикуляре к нему. Т.е. центр окружности, проходящей через точки А и В, лежит на серединном перпендикуляре к отрезку АВ.
Наименьшее расстояние от точек А и В до прямой а - длина перпендикуляра, проведенного к а, т.е. R = HA = HB = 1 см. Если же центр окружности не совпадает с точкой Н, то радиус будет больше, чем НА (гипотенуза ОА в прямоугольном треугольнике АОН больше катета НА).
Центр окружности, проходящей через точки А и В, равноудален от этих точек. А все точки, равноудаленные от концов отрезка АВ, лежат на серединном перпендикуляре к нему. Т.е. центр окружности, проходящей через точки А и В, лежит на серединном перпендикуляре к отрезку АВ.
Наименьшее расстояние от точек А и В до прямой а - длина перпендикуляра, проведенного к а, т.е. R = HA = HB = 1 см. Если же центр окружности не совпадает с точкой Н, то радиус будет больше, чем НА (гипотенуза ОА в прямоугольном треугольнике АОН больше катета НА).
а) Рассмотрим ΔMBO и ΔAPO
1) ∠AOP=∠MOB - как вертикальные углы
2) ∠OMB=∠APO - как накрест лежащие углы при параллельных прямых NP и MQ и секущей MP. (NP//MQ - по определению параллелограмма)
3) MO=OP - по свойству параллелограмма (точкой пересечения делит диагонали пополам)
Значит ΔMBO и ΔAPO равны по двум углам и стороной между ними. Следовательно AO=OB - как соответственно равные элементы в равных треугольниках.
б) 1) Из пункта а) ΔMBO = ΔAPO, значит MB=AP=2 см - как соответственно равные элементы в равных треугольниках.
2) NP=NA+AP=3+2=5см
Объяснение: