Исходя из того, что точки расположены на окружности: полученный четырехугольник будет вписан в окружность.
Так как противоположные стороны четырехугольника BF и NJ равны и паралельны друг другу по условию, то четырехугольник BFJN – параллелограмм.
Параллелограмм, который можно вписать в окружность – прямоугольник.
Проведём диагонали BJ и FN. Точка пересечения диагоналей, вписанного в окружность прямоугольника, является центром этой окружности, следовательно каждая диагональ является диаметром.
Тогда BJ – диаметр окружности.
Диаметр окружности вдвое больше её радиуса, получим что BJ=51*2=102 см.
Рассмотрим ∆BJF.
Так как BFJN – прямоугольник, то угол BFJ=90°, а ∆BJF – прямоугольный.
BJ=102 см,
BF=48 см по условию.
По теореме Пифагора в ∆BJF:
BJ²=BF²+FJ²
102²=48²+FJ²
FJ²=10404–2304
FJ=√8100
FJ=90 см.
Получим что другая сторона четырехугольника равна 90 см. Так как данный четырехугольник – прямоугольник, то противоположная ей сторона равна так же 90 см.
Обозначим на чертеже точку О – точку пересечения МР и BD.
ВО=OD по условию,
BM=MA по условию,
Тогда по обратной теореме Пифагора МО||AD так как прямые МО и AD делят стороны угла BD и BA на равные части.
Следовательно МР||AD так же.
Исходя из того что ВМ=МА: точка М – середина ВА.
Так как МР – отрезок, параллельный основанию AD трапеции ABCD, и при этом проходит через середину боковой стороны ВА – точку М, то МР – средняя линия трапеции ABCD.
Исходя из того, что точки расположены на окружности: полученный четырехугольник будет вписан в окружность.
Так как противоположные стороны четырехугольника BF и NJ равны и паралельны друг другу по условию, то четырехугольник BFJN – параллелограмм.
Параллелограмм, который можно вписать в окружность – прямоугольник.
Проведём диагонали BJ и FN. Точка пересечения диагоналей, вписанного в окружность прямоугольника, является центром этой окружности, следовательно каждая диагональ является диаметром.
Тогда BJ – диаметр окружности.
Диаметр окружности вдвое больше её радиуса, получим что BJ=51*2=102 см.
Рассмотрим ∆BJF.
Так как BFJN – прямоугольник, то угол BFJ=90°, а ∆BJF – прямоугольный.
BJ=102 см,
BF=48 см по условию.
По теореме Пифагора в ∆BJF:
BJ²=BF²+FJ²
102²=48²+FJ²
FJ²=10404–2304
FJ=√8100
FJ=90 см.
Получим что другая сторона четырехугольника равна 90 см. Так как данный четырехугольник – прямоугольник, то противоположная ей сторона равна так же 90 см.
ответ: 90 см.
Обозначим на чертеже точку О – точку пересечения МР и BD.
ВО=OD по условию,
BM=MA по условию,
Тогда по обратной теореме Пифагора МО||AD так как прямые МО и AD делят стороны угла BD и BA на равные части.
Следовательно МР||AD так же.
Исходя из того что ВМ=МА: точка М – середина ВА.
Так как МР – отрезок, параллельный основанию AD трапеции ABCD, и при этом проходит через середину боковой стороны ВА – точку М, то МР – средняя линия трапеции ABCD.
Средняя линия трапеции равна полусумме оснований.
То есть МР=(ВС+AD)÷2=(4+6)÷2=5.
ответ: 5.