Дано: АВСD - прямоугольник, Р авсd = 44 сантиметра, АВ = ВС + 2 сантиметров, Найти площадь S abcd - ? Решение: 1) Рассмотрим прямоугольник АВСD. Пусть длины сторон ВС = АD = х сантиметров, тогда длины сторон АВ = СD = х + 2 сантиметров. Нам известно, что периметр равен 44 сантиметра. Составляем уравнение: х + х + х + 2 + х + 2 = 44; 4 * х + 4 = 44; 4 * х = 44 - 4; 4 * х = 40; х = 40 : 4; х = 10 сантиметров - длины сторон ВС и АD; 10 + 2 = 12 сантиметров - длины сторон АВ и СD; 2) Площадь S abcd = АВ * ВС; S abcd = 12 * 10; S abcd = 120 сантиметров квадратных. ответ: 120 сантиметров квадратных.
ВD - высота равнобедренного треугольника, проведенная к основанию, значит и биссектриса.
Биссектриса треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
В треугольнике АВМ ВО - биссектриса, значит
АО : ОМ = ВА : ВМ
ВА = АО · ВМ / ОМ = 18 · 16 / 12 = 24 см
Доказательство свойства биссектрисы (на всякий случай)
Проведем прямую АК║BD, К - точка пересечения этой прямой с прямой ВС.
∠DBA = ∠KAB как накрест лежащие (AK ║ BD, AB секущая),
∠CBD = ∠СКА как соответственные (АК ║ BD, СК секущая),
так как ∠DBA = ∠CBD, то и ∠КАВ = ∠СКА, тогда
ΔАВК равнобедренный, АВ = ВК.
По обобщенной теореме Фалеса:
АО : ОМ = КВ : ВМ или
АО : ОМ = АВ : ВМ.
Р авсd = 44 сантиметра,
АВ = ВС + 2 сантиметров,
Найти площадь S abcd - ?
Решение:
1) Рассмотрим прямоугольник АВСD. Пусть длины сторон ВС = АD = х сантиметров, тогда длины сторон АВ = СD = х + 2 сантиметров. Нам известно, что периметр равен 44 сантиметра. Составляем уравнение:
х + х + х + 2 + х + 2 = 44;
4 * х + 4 = 44;
4 * х = 44 - 4;
4 * х = 40;
х = 40 : 4;
х = 10 сантиметров - длины сторон ВС и АD;
10 + 2 = 12 сантиметров - длины сторон АВ и СD;
2) Площадь S abcd = АВ * ВС;
S abcd = 12 * 10;
S abcd = 120 сантиметров квадратных.
ответ: 120 сантиметров квадратных.