1. Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом. Отсюда, внешний угол при вершине К = 25° + 25° + 9° = 59°.
---------------------------------------------------
2. У треугольника сумма любых двух сторон должна быть больше третьей.
Допустим, боковая сторона данного равнобедренного треугольника равна 6 см. Тогда должно быть верно неравенство:
6 + 6 > 14
12 > 14, ЛОЖЬ ! треугольник не существует!
Теперь, предположим, что боковая сторона равна 14 см. Тогда должно быть верно неравенство:
14 + 14 > 6
28 > 6, верно ! треугольник существует! Значит 14 см - боковая сторона, 6 см - основание.
всё:)
угол 1 = 60°, тогда смежный с ним угол 2 = 180° - 60° = 120°.
т.к. АВСД - прямоугольник, то ВО = ОС => треугольник ВОС - равнобедренный => угол 3 равен углу ОСВ = (180° - 120°) / 2 = 60° / 2 = 30°.
если ВК - перпендикуляр к АО, то угол ВКО = 90° => треугольник ВКО - прямоугольный => угол 4 = 90° - 60° = 30°.
т.к. угол АВС = 90° (АВСД - прямоугольник), угол 3 = 30°, угол 4 = 30°, то угол 5 = 90° - 30° - 30° = 30°.
если угол 5 = углу 4, АК - общая сторона и перпендикуляр, то треугольник АКВ = треугольнику ВКО => АК = КО = 7 (см) => АО = 7 + 7 = 14 (см).
Диагонали прямоугольника точкой пересечения делятся пополам => АС = АО · 2 = 14 · 2 = 28 (см)
1. Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом. Отсюда, внешний угол при вершине К = 25° + 25° + 9° = 59°.
---------------------------------------------------
2. У треугольника сумма любых двух сторон должна быть больше третьей.
Допустим, боковая сторона данного равнобедренного треугольника равна 6 см. Тогда должно быть верно неравенство:
6 + 6 > 14
12 > 14, ЛОЖЬ ! треугольник не существует!
Теперь, предположим, что боковая сторона равна 14 см. Тогда должно быть верно неравенство:
14 + 14 > 6
28 > 6, верно ! треугольник существует! Значит 14 см - боковая сторона, 6 см - основание.
всё:)
угол 1 = 60°, тогда смежный с ним угол 2 = 180° - 60° = 120°.
т.к. АВСД - прямоугольник, то ВО = ОС => треугольник ВОС - равнобедренный => угол 3 равен углу ОСВ = (180° - 120°) / 2 = 60° / 2 = 30°.
если ВК - перпендикуляр к АО, то угол ВКО = 90° => треугольник ВКО - прямоугольный => угол 4 = 90° - 60° = 30°.
т.к. угол АВС = 90° (АВСД - прямоугольник), угол 3 = 30°, угол 4 = 30°, то угол 5 = 90° - 30° - 30° = 30°.
если угол 5 = углу 4, АК - общая сторона и перпендикуляр, то треугольник АКВ = треугольнику ВКО => АК = КО = 7 (см) => АО = 7 + 7 = 14 (см).
Диагонали прямоугольника точкой пересечения делятся пополам => АС = АО · 2 = 14 · 2 = 28 (см)
всё:)