Найти точки, симметричные точке (2;7) относительно: начала координат, оси абсцисс, оси ординат; точку, в которую переходит данная точка при параллельном перенесении которое задано формулами x' = x + 2, y' = y - 1
1)Площадь параллелограмма 32, тогда одна сторона 32/4=8,
высота 5,(3)=5целых и одна треть=16/3. тогда другая сторона равна
32/(16/3)=32*3/16=6, а периметр (8+6)*2=28
2)Срабатывает свойство - если из одной точки к окружности провести касательные. то отрезки касательных до точек касания равны, если коэффициент пропорциональности равен х, то от бок. сторона треугольника равна 4х+3х=7х.
Т.к. основание равно 6, то 3х+3х=6, откуда х=1, значит, основание 6, боковые обе по 7*1=7, тогда периметр равен 7+7+6=20
Биссектриса прямого угла делит гипотенузу на отрезки, пропорциональные прилежащим сторонам, найдем по теор. Пифагора гипотенузу.
√(3²+6²)=√45=3√5
Если один отрезок гипотенузы, прилежащий к меньшему катету, равен х, то другой, равен (3√5-х)
Составим пропорцию и найдем биссектрису.
3/6=х/(3√5-х), 2х=3√5-х, откуда х=√5
Теперь найдем биссектрису по теореме косинусов. ПУсть она будет в,
тогда 3³+в²-2*3*в*cos45°=(√5)²
9+в²-2*3*√2в/2=5
в²-3√2в+4=0,
ПО теореме, обратной теореме Виета, найдем корни. это в₁=√2 и в₂=2√2
1)Площадь параллелограмма 32, тогда одна сторона 32/4=8,
высота 5,(3)=5целых и одна треть=16/3. тогда другая сторона равна
32/(16/3)=32*3/16=6, а периметр (8+6)*2=28
2)Срабатывает свойство - если из одной точки к окружности провести касательные. то отрезки касательных до точек касания равны, если коэффициент пропорциональности равен х, то от бок. сторона треугольника равна 4х+3х=7х.
Т.к. основание равно 6, то 3х+3х=6, откуда х=1, значит, основание 6, боковые обе по 7*1=7, тогда периметр равен 7+7+6=20
Биссектриса прямого угла делит гипотенузу на отрезки, пропорциональные прилежащим сторонам, найдем по теор. Пифагора гипотенузу.
√(3²+6²)=√45=3√5
Если один отрезок гипотенузы, прилежащий к меньшему катету, равен х, то другой, равен (3√5-х)
Составим пропорцию и найдем биссектрису.
3/6=х/(3√5-х), 2х=3√5-х, откуда х=√5
Теперь найдем биссектрису по теореме косинусов. ПУсть она будет в,
тогда 3³+в²-2*3*в*cos45°=(√5)²
9+в²-2*3*√2в/2=5
в²-3√2в+4=0,
ПО теореме, обратной теореме Виета, найдем корни. это в₁=√2 и в₂=2√2
По теореме Пифагора
a²+b²=16²
S=a·b/2
Решаем систему двух уравнений с двумя неизвестными
a²+b²=256
a·b=64√2 ⇒ b=64√2/a
a²+(64√2/a)²=256
a⁴-256a²+8192=0
D=256²-4·8192=65536-32768=32768=(128√2)²
a²=(256-(128√2))/2=128-64√2 или а²=(256+(128√2))/2=128+64√2
a₁=√(128-64√2)=8·√ (2-√2) или a₂=8·√(2+√2)
b₁=64·√2/8√(2-√2) =8·√2·√(2+√2)/ √(2-√2)√(2+√2)=
=8√2·√(2+√2)/√(2²-(√2)²)=
=8√2·√(2+√2)/√2= 8·√(2+√2)
b₂=64√2/8√(2+√2) =8√2·√(2-√2)/ √(2-√2)√(2+√2)=
=8√2·√(2-√2)/√(2²-(√2)²)=
=8√2·√(2-√2)/√2= 8·√(2-√2)
tgα=a₁/b₁=8·√(2-√2)/8·√(2+√2) =√(2-√2)/√(2+√2)=
=√(2-√2)√(2-√2)/√(2+√2)√(2-√2)=
=√(6-4√2)/√2=√(3√2-4)
или
tgα=a₂/b₂=8·√(2+√2)/8·√(2-√2) =√(2+√2)/√(2-√2)=
=√(2+√2)√(2+√2)/√(2+√2)√(2-√2)=
=√(6+4√2)/√2=√(3√2+4)