Это же элементарно! Обозначим углы ромба буквами A;B;C;D Есть такое правило, что диагонали ромба точкой пересечения делятся попалам а все стороны равны, следовательно рассмотрим треугольник ABO: AB=30см BO=15 см т. к половина диагонали. И получается прямоугольный треугольник ABO По теореме пифагора ищим сторону AO 30^2=15^2+x Считаем и получаем x Х у нас будет 1/2 от второй диагонали а значит вторая диагональ равна в 2 раза больше. Ну а площадь ромба равна 1/2 произведения диагоналей а тоесть 30*2x*1/2 удачи)
Оказалось непросто, даже почти забанили за самоуверенность. Но решение простое. Итак: Треугольник ABC. Высота BD. Обозначим длину искомого отрезка - х (EF). BD=4, AD=1, DC=8, Задача сводится к тому, чтобы прировнять площади двух получившихся фигур, S1 (маленький треугольник CEF) и S2 (сложная фигура, состоящая из треугольника ABD и прямоугольной трапеции BEFD. Отношение сторон треугольника ECF равно отношению в BCD. Следовательно если EF=x, то CF=2x. Находим площадь S1=(x*2x)/2=x²; То есть S2=S1, но вместе с тем S2+S1=Sобщ. Sобщ=(4*8)/2+(4*1)/2=18; Sобщ=2S1=2x²=18; x²=9; x=3. ответ: длина отрезка = 3.
Обозначим углы ромба буквами A;B;C;D
Есть такое правило, что диагонали ромба точкой пересечения делятся попалам а все стороны равны, следовательно рассмотрим треугольник
ABO:
AB=30см
BO=15 см т. к половина диагонали.
И получается прямоугольный треугольник ABO
По теореме пифагора ищим сторону AO
30^2=15^2+x
Считаем и получаем x
Х у нас будет 1/2 от второй диагонали а значит вторая диагональ равна в 2 раза больше.
Ну а площадь ромба равна 1/2 произведения диагоналей а тоесть 30*2x*1/2
удачи)