P(DKC) = CD + CK + DK P(DKE) = DE + KE + DK как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е 14 = 16 + 18 - 4DK 4DK = 16 + 18 - 14 DK = 5 см Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см. Теперь находим стороны прямоугольника. DС = ЕF = 16 - 5 - 5 = 6 см DE = CF = 18 - 5 - 5 = 8 см Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
опустим высоту и рассмотрим прямоугольный треугольник, образованный высотой, боковой стороной и частью большего основания трапеции. по теореме Пифагора находим меленький отрезок на большем основании трапеции 13 ²=12²+х² х²=13²-12² х²=169-144 х²=25 х=5 т.к. это трапеция равнобедренная, с двух сторон будут одинаковые отрезки отрезки, значит, большее основание будет равно: 5+5+7=17 (см) Площадь трапеции равна: средняя линия*высоту. Средняя линия равна: (7+17)/2=12(см) Отсюда площадь равна: 12*12=144 (см²)
P(DKE) = DE + KE + DK
как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е
14 = 16 + 18 - 4DK
4DK = 16 + 18 - 14
DK = 5 см
Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см.
Теперь находим стороны прямоугольника.
DС = ЕF = 16 - 5 - 5 = 6 см
DE = CF = 18 - 5 - 5 = 8 см
Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
по теореме Пифагора находим меленький отрезок на большем основании трапеции 13 ²=12²+х²
х²=13²-12²
х²=169-144
х²=25
х=5
т.к. это трапеция равнобедренная, с двух сторон будут одинаковые отрезки отрезки, значит, большее основание будет равно: 5+5+7=17 (см)
Площадь трапеции равна: средняя линия*высоту.
Средняя линия равна: (7+17)/2=12(см)
Отсюда площадь равна: 12*12=144 (см²)