Да, верно. Пусть b – данная прямая, а точка A принадлежит этой прямой. Возьмем некоторый луч b1 на прямой b с начальной точкой в A. Отложим от луча b1 угол (a1b1), равный 90°. По определению прямая содержащая луч a1 будет перпендикулярная прямой b. Допустим, существует другая прямая перпендикулярная прямой b и проходящая через точку A. Возьмем на этой прямой луч с1, исходящий из точки A и лежащий в той же полуплоскости, что и луч a1. Тогда ∠ (a1b1) = ∠ (c1b1) = 90 º. Но согласно аксиоме 8, в данную полуплоскость можно отложить только один угол, равный 90 º. Следовательно, нельзя провести другую прямую перпендикулярную прямой b через точку A в заданную полуплоскость.
Пусть b – данная прямая, а точка A принадлежит этой прямой. Возьмем некоторый луч b1 на прямой b с начальной точкой в A. Отложим от луча b1 угол (a1b1), равный 90°. По определению прямая содержащая луч a1 будет перпендикулярная прямой b.
Допустим, существует другая прямая перпендикулярная прямой b и проходящая через точку A. Возьмем на этой прямой луч с1, исходящий из точки A и лежащий в той же полуплоскости, что и луч a1. Тогда ∠ (a1b1) = ∠ (c1b1) = 90 º. Но согласно аксиоме 8, в данную полуплоскость можно отложить только один угол, равный 90 º. Следовательно, нельзя провести другую прямую перпендикулярную прямой b через точку A в заданную полуплоскость.
тогда ∠АВС = 180° - 2·30° = 120°
Проведем ВК - высоту и медиану.
Обозначим ЕС = х, АК = КВ = у. Тогда АВ = х + 8.
По свойству биссектрисы:
ВЕ : ЕС = АВ :АС
8 : x = (x + 8) : (2y)
16y = x(x + 8)
y = x(x + 8)/16
Из прямоугольного треугольника ВКС по определению косинуса:
y = BC·cos∠BCK
y = (x + 8)·√3/2
Из двух уравнений получаем:
x(x + 8)/16 = (x + 8)·√3/2
x/16 = √3/2
x = 8√3
AB = BC = 8 + 8√3 (см)
Sabc = 1/2 · AB · BC · sin120°
Sabc = 1/2 · (8 + 8√3)²·√3/2 = 16√3(√3 + 1)² = 16√3(4 + 2√3) = 32√3(2 + √3) (см²)