В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

Найти угол между прямыми AB и CD

Показать ответ
Ответ:
stolyarovsemen
stolyarovsemen
02.07.2022 05:23
Задача в одно действие.
Основания трапеции AB и CD. Если продолжить AB за точку B, и DM за точку M, до их пересечения в точке D1, то очевидно DM = D1M;
Тут можно кучу обоснований дать, например, равны треугольники AMD и BMD1 по КУЧЕ углов (это очевидно подобные треугольники, то есть у них все углы равны) и одной стороне BM = CM;
На самом деле есть "более старшее"обоснование. параллельные прямые делят пропорционально ВСЕ секущие, а тут "неявно" присутствует еще одна параллельная - средняя линия, содержащая точку M.
Вот после этого очевидно, что если также продолжить DC и AM до пересечения в точке A1, то A1M = AM;
То есть получился параллелограмм AD1A1D; (диагонали делятся пополам точкой пересечения). В силу упомянутого равенства треугольников AMD и BMD1; упомянутая в задаче сумма площадей равна площади треугольника D1MA;
Диагонали делят параллелограмм на 4 треугольника, равных по площади, то есть упомянутая сумма равна также площади треугольника DMA, а это уже закрывает вопрос задачи.
0,0(0 оценок)
Ответ:
vikaraduga
vikaraduga
14.06.2022 18:11

Решение можно найти двумя

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 =

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².2) Для правильного тетраэдра высота основания h равна апофеме A боковой грани. Проекция апофемы на основание равна (1/3) высоты основания.

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².2) Для правильного тетраэдра высота основания h равна апофеме A боковой грани. Проекция апофемы на основание равна (1/3) высоты основания.Косинус угла α наклона боковой грани равен (1/3)h)/(1A) = 1/3.

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².2) Для правильного тетраэдра высота основания h равна апофеме A боковой грани. Проекция апофемы на основание равна (1/3) высоты основания.Косинус угла α наклона боковой грани равен (1/3)h)/(1A) = 1/3.Площадь проекции боковой грани на основание равна:

Решение можно найти двумя Проекция боковой грани на основание для правильного тетраэдра равна 1/3 площади основания:So(б.гр) = (1/3)So = 1/3)(a²√3/4) = (a²√3/12) = (8²√3)/12 = (64√3)/12 == 16√3/3 см².2) Для правильного тетраэдра высота основания h равна апофеме A боковой грани. Проекция апофемы на основание равна (1/3) высоты основания.Косинус угла α наклона боковой грани равен (1/3)h)/(1A) = 1/3.Площадь проекции боковой грани на основание равна:So(б.гр) = S(б.гр)*cos α = (8²√3/4)*(1/3) = (64√3)/12 = 16√3/3 см².

Объяснение:

как то так

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота