Трапеция АВСД, ВС=3, АД=10, АС=5, ВД=12, из вершины С проводим линию параллельную ВД до пересечения ее с продолжением АД в точке К, ДВСК-параллелограмм ВС=ДК=3, СК=ВД=12, АК=АД+ДК=10+3=13, треугольник АСК периметр=АС+СК+АК=5+12+13=30, полупериметр (р)=30/2=15, проводим высоту СН на АД, площадь трапеции АВСД=(ВС+АД)*СН/2, площадь треугольника АСК=(АК*СН)/2, но АК=АД+ВС, площадь АВСД=площадь АСК, площадь АСК=корень(р*(р-АС)*(р-СК)*(р-АК))=корень(15*10*3*2)=30, площадь АВСД=1/2*АС*ВД*sin углаСОД (О-пересечение диагоналей) =1/2*-5*12*sin углаСОД =30*sin углаСОД , 30=30*sin углаСОД , sin углаСОД =30/30=1, что соответствует углу 90, диагонали перпендикулярны
Диагонали ромба пересекаются под прямым углом и делятся точкой пересечения пополам. Весь ромб при этом делится на 4 равных прямоугольных треугольника. Площадь каждого треугольника будет = 540/4=135 кв. см. 4,5дм=45 см площадь ромба = половине произведения диагоналей, поэтому 540=1/2*d*45, отсюда вторая диагональ d=540*2/45=24. Т. к. диагонали точкой пересечения делятся пополам, то катеты прямоугольных треугольников равны 24/2=12 см и 45/2=22,5 см. Расстояние от точки пересечения диагоналей до стороны ромба равно высоте прямоугольного треугольника, опущенной из прямого угла. найдём сторону ромба по теореме Пифагора a^2=12^2+(22.5)^2=650.25? a=25.5 см площадь прямоугольного треугольника можно вычислить другим отсюда h= S*2/a=135*2/25.5=10целых10/17см
площадь ромба = половине произведения диагоналей, поэтому 540=1/2*d*45, отсюда вторая диагональ d=540*2/45=24. Т. к. диагонали точкой пересечения делятся пополам, то катеты прямоугольных треугольников равны 24/2=12 см и 45/2=22,5 см. Расстояние от точки пересечения диагоналей до стороны ромба равно высоте прямоугольного треугольника, опущенной из прямого угла.
найдём сторону ромба по теореме Пифагора a^2=12^2+(22.5)^2=650.25? a=25.5 см
площадь прямоугольного треугольника можно вычислить другим отсюда h= S*2/a=135*2/25.5=10целых10/17см