Теорема 1. В треугольнике против большей стороны лежит больший угол.
Доказательство. Пусть в треугольнике ABC сторона АВ больше стороны АС (рис.1, а).
Рис.1
Докажем, что ∠ С > ∠ В. Отложим на стороне АВ отрезок AD, равный стороне АС (рис.1, б). Так как AD < АВ, то точка D лежит между точками А и В. Следовательно, угол 1 является частью угла С и, значит, ∠ C > ∠ 1. Угол 2 — внешний угол треугольника BDC, поэтому Z 2 > Z В. Углы 1 и 2 равны как углы при основании равнобедренного треугольника ADC. Таким образом, ∠ С > ∠ 1, ∠ 1 = ∠ 2, ∠ 2 > ∠ B. Отсюда следует, что ∠ С > ∠ В.
Справедлива и обратная теорема (ее доказательство проводится методом от противного).
Теорема 2. В треугольнике против большего угла лежит большая сторона.
Из теоремы 1 вытекает
Следствие 1. Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).
Доказательство следствия проводится методом от противного.
Из следствия 1 следует, что если три угла треугольника равны, то треугольник равносторонний.
Из теоремы 2 получаем
Следствие 3. В прямоугольном треугольнике гипотенуза больше катета.
С использованием теоремы 2 устанавливается следующая теорема.
Теорема 3. Каждая сторона треугольника меньше суммы двух других сторон.
Следствие 4. Для любых трех точек А, В и С, не лежащих на одной прямой, справедливы неравенства: АВ < АС + СВ, АС < АВ + ВС, ВС < ВА + АС.
А1. ∠САО = ∠МВО как накрест лежащие при пересечении АС║ВМ секущей АВ, ∠СОА = ∠МОВ как вертикальные, ⇒ ΔСОА подобен ΔМОВ по двум углам. СО : ОМ = АС : МВ 10 : ОМ = 15 : 3 ОМ = 10 · 3 : 15 = 2 см СМ = СО + ОМ = 10 + 2 = 12 см
А2. ∠АРК = ∠АСВ как накрест лежащие при пересечении КР║ВС секущей АС, ∠А общий для треугольников АКР и АВС, ⇒ ΔАКР подобен ΔАВС по двум углам. Отношение периметров подобных треугольников равно коэффициенту подобия: Pakp : Pabc = AK : AB Pakp = Pabc · AK / AB = (16 + 15 + 8) · 4 / 16 = 39 / 4 = 9,75 см
Теорема 1. В треугольнике против большей стороны лежит больший угол.
Доказательство. Пусть в треугольнике ABC сторона АВ больше стороны АС (рис.1, а).
Рис.1
Докажем, что ∠ С > ∠ В. Отложим на стороне АВ отрезок AD, равный стороне АС (рис.1, б). Так как AD < АВ, то точка D лежит между точками А и В. Следовательно, угол 1 является частью угла С и, значит, ∠ C > ∠ 1. Угол 2 — внешний угол треугольника BDC, поэтому Z 2 > Z В. Углы 1 и 2 равны как углы при основании равнобедренного треугольника ADC. Таким образом, ∠ С > ∠ 1, ∠ 1 = ∠ 2, ∠ 2 > ∠ B. Отсюда следует, что ∠ С > ∠ В.
Справедлива и обратная теорема (ее доказательство проводится методом от противного).
Теорема 2. В треугольнике против большего угла лежит большая сторона.
Из теоремы 1 вытекает
Следствие 1. Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).
Доказательство следствия проводится методом от противного.
Из следствия 1 следует, что если три угла треугольника равны, то треугольник равносторонний.
Из теоремы 2 получаем
Следствие 3. В прямоугольном треугольнике гипотенуза больше катета.
С использованием теоремы 2 устанавливается следующая теорема.
Теорема 3. Каждая сторона треугольника меньше суммы двух других сторон.
Следствие 4. Для любых трех точек А, В и С, не лежащих на одной прямой, справедливы неравенства:
АВ < АС + СВ, АС < АВ + ВС, ВС < ВА + АС.
∠САО = ∠МВО как накрест лежащие при пересечении АС║ВМ секущей АВ,
∠СОА = ∠МОВ как вертикальные, ⇒
ΔСОА подобен ΔМОВ по двум углам.
СО : ОМ = АС : МВ
10 : ОМ = 15 : 3
ОМ = 10 · 3 : 15 = 2 см
СМ = СО + ОМ = 10 + 2 = 12 см
А2.
∠АРК = ∠АСВ как накрест лежащие при пересечении КР║ВС секущей АС,
∠А общий для треугольников АКР и АВС, ⇒
ΔАКР подобен ΔАВС по двум углам.
Отношение периметров подобных треугольников равно коэффициенту подобия:
Pakp : Pabc = AK : AB
Pakp = Pabc · AK / AB = (16 + 15 + 8) · 4 / 16 = 39 / 4 = 9,75 см