Проведённая высота отсекла прямоугольный треугольник, в котором боковая сторона трапеции будет гипотенузой, высота трапеции - это катет, лежащий против угла в 30 градусов; он равен половине гипотенузы. Следовательно гипотенуза = 5 * 2 = 10 И, наконец, катет - это часть нижнего основания По теореме Пифагора √(10² - 5²) = √75 = 5√3 или через тангенс В нижнем основании таких частей две слева и справа Величина всего нижнего основания складывается из трёх частей 5√3 + 6 + 5√3 = 10√3 + 6 = 2(5 + 3). ответ: 2(√5 + 3)
Недочет в условии: середины двух ПАРАЛЛЕЛЬНЫХ хорд. перпендикуляр, опущенный на первую хорду делит ее пополам(то есть является серединным перпендикуляром к хорде). если опустить из центра окружности на другую хорду перпендикуляр, результат тот же получим. получается, что из одной точки проведены два перпендикуляра к параллельным прямым. докажем, что они совпадают(прямые, содержащие перпендикуляры, совпадают - имеется в виду). если из точки опущен перпендикуляр на одну из параллельных прямых, то он будет являться перпендикуляром и к другой прямой >> перпендикуляры совпадают >> прямая, содержащая середины двух параллельных хорд окружности, проходит через центр окружности, что и требовалось доказать.
высота трапеции - это катет, лежащий против угла в 30 градусов; он равен половине гипотенузы. Следовательно гипотенуза = 5 * 2 = 10
И, наконец, катет - это часть нижнего основания
По теореме Пифагора √(10² - 5²) = √75 = 5√3
или через тангенс
В нижнем основании таких частей две слева и справа
Величина всего нижнего основания складывается из трёх частей
5√3 + 6 + 5√3 = 10√3 + 6 = 2(5 + 3).
ответ: 2(√5 + 3)
перпендикуляр, опущенный на первую хорду делит ее пополам(то есть является серединным перпендикуляром к хорде). если опустить из центра окружности на другую хорду перпендикуляр, результат тот же получим. получается, что из одной точки проведены два перпендикуляра к параллельным прямым. докажем, что они совпадают(прямые, содержащие перпендикуляры, совпадают - имеется в виду). если из точки опущен перпендикуляр на одну из параллельных прямых, то он будет являться перпендикуляром и к другой прямой >> перпендикуляры совпадают >> прямая, содержащая середины двух параллельных хорд окружности, проходит через центр окружности, что и требовалось доказать.