В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
2polina21
2polina21
19.03.2021 11:49 •  Геометрия

Найти уравнение множества точек, для каждой из которых сумма расстояний от двух точек f₁(4; 0) и f₂(-4; 0) равна 10.

Показать ответ
Ответ:
gancedag05
gancedag05
05.10.2020 22:12
Эллипс — геометрическое место точек M, для которых сумма расстояний до двух данных точек F₁ и F₂ (называемых фокусами) постоянна и больше расстояния между фокусами.

По условию F₁M+F₂M=10.

Так как фокусные расстояния F₁ и F₂ равноудалены от начала координат, то центр эллипса лежит в начале координат.

Каноническое уравнение эллипса: х²/а²+у²/b²=1.

Расположим точку М на оси Oy, тогда b=MO. MO - высота равнобедренного треугольника F₁MF₂.
F₁M+F₂M=10, значит F₁M=5.
В треугольнике ОМF₁ MO²=F₁M²-OF₁²=5²-4²=9,
b=MO=3.

Расположим точку М на оси Oх, тогда а=МО.
F₂M+F₁M=10,
F₂F₁+F₁M+F₁M=10,
2F₁M=10-F₂F₁=10-8=2,
F₁M=1,
a=MO=OF₁+F₁M=4+1=5.

Итак, уравнение нашего эллипса:
х²/25+у²/9=1 - это ответ.
Найти уравнение множества точек, для каждой из которых сумма расстояний от двух точек f₁(4; 0) и f₂(
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота