В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lgolar
lgolar
29.09.2021 21:44 •  Геометрия

Найти вершину фокус и директрису параболы -2x^2+8x-y-5=0

Показать ответ
Ответ:
люся4085
люся4085
24.01.2024 04:26
Хорошо, давайте разберемся вместе!

Первым шагом для нахождения вершины фокуса и директрисы параболы -2x^2+8x-y-5=0 является перевод этого уравнения в стандартную форму.

Уравнение параболы в общей форме выглядит так: Ax^2 + Bx + Cy + D = 0, где A, B, C, и D - это коэффициенты.

В нашем случае, мы видим, что коэффициент A равен -2, коэффициент B равен 8, коэффициент C равен -1, и коэффициент D равен -5.

Теперь давайте начнем переводить это уравнение в стандартную форму параболы.

1. Сначала вынесите избыточный коэффициент -1 из левой стороны уравнения:
-2x^2 + 8x - y - 5 + 5 = -1 + 5
-2x^2 + 8x - y = 4

2. Чтобы перевести уравнение в стандартную форму, мы хотим разделить коэффициенты x и y на -2. Для этого домножим на -1/2 (половину):
(-1/2)(-2x^2 + 8x - y) = (-1/2)(4)
x^2 - 4x + (1/2)y = -2

3. Теперь мы хотим сгруппировать коэффициенты x в квадрат и просто x в одном слагаемом. Для этого добавим и вычтем коэффициент (B/2A)^2:
x^2 - 4x + 4 - 4 + (1/2)y = -2

4. Теперь можно переписать левую часть уравнения в виде (x - h)^2, где h - координата x вершины параболы:
(x - 2)^2 - 4 + (1/2)y = -2

5. Для приведения уравнения к стандартной форме отдельно перенесем оставшиеся слагаемые на правую сторону:
(x - 2)^2 - 4 + (1/2)y + 4 = -2 + 4
(x - 2)^2 + (1/2)y = 2

Таким образом, мы перевели исходное уравнение в стандартную форму параболы: (x - 2)^2 + (1/2)y = 2.

Теперь, чтобы найти вершину параболы, заметим, что у нас получилось уравнение вида (x - h)^2 + (1/2)y = k, где (h, k) - координаты вершины параболы.

Исходя из этого уравнения, мы видим, что h = 2 и k = 2. Таким образом, координаты вершины параболы равны (2, 2).

Чтобы найти директрису параболы, мы знаем, что директриса находится на расстоянии |p| от вершины параболы, где p - фокусное расстояние.

В данном случае, коэффициент p можно найти по формуле p = 1/(4A). Подставим значение A, полученное из исходного уравнения (A = -2), в эту формулу:

p = 1/(4(-2))
p = 1/(-8)
p = -1/8

Теперь, зная фокусное расстояние p и вершину параболы (h, k), мы можем найти координаты фокуса, где фокус находится на расстоянии p под вершиной параболы.

Для этого, мы просто отнимем p от координаты y вершины параболы (k):
y-координата фокуса = 2 - (-1/8)
= 2 + 1/8
= 17/8

Таким образом, координаты фокуса равны (2, 17/8).

И, наконец, чтобы найти директрису параболы, мы просто отнимаем p от координаты y вершины параболы (k):
y-координата директрисы = 2 + (-1/8)
= 2 - 1/8
= 15/8

Получается, что директриса параболы имеет уравнение y = 15/8.

Таким образом, вершина параболы находится в точке (2, 2), фокус находится в точке (2, 17/8), а директриса имеет уравнение y = 15/8.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота