А) (если второй признак- по стороне и двум прилежащим к ней углам) Достаточно сказать, что углы 1) А и М; 2)B и К; 3)С и О равны. В первом случае: Углы В и С равны (по признаку равнобедренного треугольника) Углы К и О равны (по признаку равнобедренного треугольника) <В=<С= (180-<А)/2 <К=<О=(180-<М)/2 А так как <А=<М, то углы В, С, К, О тоже равны. А треугольники АВС и МКО равны по стороне и двум прилежащим к ней углам. Во втором и третьем случае: Углы В и С равны (по признаку равнобедренного треугольника) Углы К и О равны (по признаку равнобедренного треугольника) А так как <В=<К (или <С=<О), то углы В, С, К, О тоже равны. А треугольники АВС и МКО равны по стороне и двум прилежащим к ней углам Б) (если третий признак - по трем сторонам) 1) АВ=МК; 2)АВ=МО; 3) АС=МК; 4)АС=МО Так какАВ=АС И МК=МО( по признаку равнобедренного треугольника), то АВ=АС=МК=МО Значит, треугольники АВС и МКО равны по трем углам
V = a^3 = 1000 м^3, где a - это сторона куба. тогда a = ∛(1000м^3) = 10м Площадь основания = a^2 = (10м)^2 = 100м^2. Найдем диагональ этого куба. Сначала найдем диагональ основания куба d₁. По т. Пифагора: d₁^2 = a^2 + a^2; d₁^2 = 2*a^2, Теперь проведем диагональное сечение куба, которое проходит через диагональ основания куба и диагональ куба - в сечении получается прямоугольник со сторонами d₁ и a. Диагональ этого прямоугольника и есть искомая диагональ куба. По т. Пифагора: d^2 = d₁^2 + a^2 = 2*a^2 + a^2 = 3*a^2; d = √(3*a^2) = a*√3 = 10*√3 м.
Достаточно сказать, что углы 1) А и М; 2)B и К; 3)С и О равны.
В первом случае:
Углы В и С равны (по признаку равнобедренного треугольника)
Углы К и О равны (по признаку равнобедренного треугольника)
<В=<С= (180-<А)/2
<К=<О=(180-<М)/2
А так как <А=<М, то углы В, С, К, О тоже равны.
А треугольники АВС и МКО равны по стороне и двум прилежащим к ней углам.
Во втором и третьем случае:
Углы В и С равны (по признаку равнобедренного треугольника)
Углы К и О равны (по признаку равнобедренного треугольника)
А так как <В=<К (или <С=<О), то углы В, С, К, О тоже равны.
А треугольники АВС и МКО равны по стороне и двум прилежащим к ней углам
Б) (если третий признак - по трем сторонам)
1) АВ=МК; 2)АВ=МО; 3) АС=МК; 4)АС=МО
Так какАВ=АС И МК=МО( по признаку равнобедренного треугольника), то АВ=АС=МК=МО
Значит, треугольники АВС и МКО равны по трем углам
где a - это сторона куба.
тогда
a = ∛(1000м^3) = 10м
Площадь основания = a^2 = (10м)^2 = 100м^2.
Найдем диагональ этого куба. Сначала найдем диагональ основания куба d₁.
По т. Пифагора: d₁^2 = a^2 + a^2;
d₁^2 = 2*a^2,
Теперь проведем диагональное сечение куба, которое проходит через диагональ основания куба и диагональ куба - в сечении получается прямоугольник со сторонами d₁ и a. Диагональ этого прямоугольника и есть искомая диагональ куба.
По т. Пифагора:
d^2 = d₁^2 + a^2 = 2*a^2 + a^2 = 3*a^2;
d = √(3*a^2) = a*√3 = 10*√3 м.