Теорема про три перпендикуляри. Якщо пряма, проведена на площині через основу похилої, перпендикулярна до її проекції, то вона перпендикулярна і до похилої. І навпаки, якщо пряма на площині перпендикулярна до похилої, то вона перпендикулярна і до проекції похилої.На малюнку 415 АН - перпендикуляр до площини α; АМ - похила. Через основу похилої - точку М проведено пряму а. Теорема про три перпендикуляри стверджує, що якщо а НМ, то а АМ, і навпаки, якщо а АМ, то а НМ.
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
Пусть АВСД прямоугольная трапеци ВС, АД -основание трапеции , АВ, СД-боковые стороны к- коефициент пропор., тогда АВ=3к (сторона которая ⊥АД) СД=5к за условием задачи АД-ВС=32 Если из вершины С опустим ⊥СК, то легко увидеть, что КД=32см Рассмотрим прямоугольный треугольник СКД СК=3к , СД=5к, КД=32 32²=25к²-9к²=16к² к²=32²÷16 к=32÷4=8см Рассмотрим треугольник АВС он прямоугольный За теоремой Пифагора ВС²=АС²-АВ² АВ=3·8=24см АС=26см ВС²=26²-24²=(26-24)(26+24)=2·50=100 ВС=10см АД=10+32=42см S=((ВС+АД)×АВ)÷2 S=((10+42)×24)÷2=42×12=504 см²
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
к- коефициент пропор., тогда АВ=3к (сторона которая ⊥АД)
СД=5к
за условием задачи АД-ВС=32 Если из вершины С опустим ⊥СК, то легко увидеть, что
КД=32см
Рассмотрим прямоугольный треугольник СКД СК=3к , СД=5к, КД=32
32²=25к²-9к²=16к²
к²=32²÷16
к=32÷4=8см
Рассмотрим треугольник АВС он прямоугольный За теоремой Пифагора
ВС²=АС²-АВ²
АВ=3·8=24см
АС=26см
ВС²=26²-24²=(26-24)(26+24)=2·50=100
ВС=10см
АД=10+32=42см
S=((ВС+АД)×АВ)÷2
S=((10+42)×24)÷2=42×12=504 см²