Пусть треугольник ABC : <C =90° ; <B=<C =45° (AC =BC треугольник равнобедренный ) ; AB =18 см ; вписанный прямоугольник MNEF ( M∈[AC] , N∈ [BC] , E , F ∈ [ AB] ) .
a) MF : MN = 2 : 5 . MF =2x ; MN =5x ; P =2(MF+MN) =2(2x+5x) =14x. В ΔAFM : AF =MF =2x ; В ΔBEN : BE =NE =MF =2x ; AF +FE +EB =18 см ; * * *FE=MN =5x * * * 2x +5x+2x =18⇒ x =2(см) P =14x =14*2 см =28 см.
б) MF : MN = 5 : 2. MF =5x ; MN =2x ; P =2(MF+MN) =2(5x+2x) =14x. 5x +2x+5x =18⇒12x =18⇔x=1,5 (см) . P =14x=14*1,5 см = 21 см .
Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники. Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=6). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды. Проведем апофему пирамиды SK - это высота боковой грани. Двугранный угол SKО равен 30°. Из прямоугольного ΔSKО найдем SО (OК=АВ/2=6/2=3): SО=ОК*tg 30=3*1/√3=√3 Площадь основания Sосн=АВ²=6²=36 Объем V=Sосн*SO/3=36*√3/3=12√3
AB =18 см ;
вписанный прямоугольник MNEF ( M∈[AC] , N∈ [BC] , E , F ∈ [ AB] ) .
a) MF : MN = 2 : 5 . MF =2x ; MN =5x ; P =2(MF+MN) =2(2x+5x) =14x.
В ΔAFM : AF =MF =2x ;
В ΔBEN : BE =NE =MF =2x ;
AF +FE +EB =18 см ; * * *FE=MN =5x * * *
2x +5x+2x =18⇒ x =2(см)
P =14x =14*2 см =28 см.
б) MF : MN = 5 : 2. MF =5x ; MN =2x ; P =2(MF+MN) =2(5x+2x) =14x.
5x +2x+5x =18⇒12x =18⇔x=1,5 (см) .
P =14x=14*1,5 см = 21 см .
ответ : 28 см , 21 см .
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=6). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани.
Двугранный угол SKО равен 30°.
Из прямоугольного ΔSKО найдем SО (OК=АВ/2=6/2=3):
SО=ОК*tg 30=3*1/√3=√3
Площадь основания Sосн=АВ²=6²=36
Объем
V=Sосн*SO/3=36*√3/3=12√3