Правильный десятиугольник, вписанный в окружность, можно разделить на 10 равнобедренных треугольников, боковые стороны каждого из которых равны радиусу окружности, а угол между ними =1/10 от 360° Площадь треугольника можно найти по разным формулам. В данном случае применим S=a•b•sinα:2, где а- стороны треугольника, α- угол между ними. Величина угла между двумя радиусами в правильном десятиугольнике α=360°:10=36°, его синус ≈ 0.5878 Т.к. треугольники равнобедренные, площадь одного треугольника S=(30√2)²•0.5878:2= 520,02 S десятиугольника=10•520,02=5200,2 см² --––––––––– Непонятно, для чего в условии упомянут квадрат.
Площадь треугольника можно найти по разным формулам. В данном случае применим
S=a•b•sinα:2, где а- стороны треугольника, α- угол между ними.
Величина угла между двумя радиусами в правильном десятиугольнике
α=360°:10=36°, его синус ≈ 0.5878
Т.к. треугольники равнобедренные, площадь одного треугольника
S=(30√2)²•0.5878:2= 520,02
S десятиугольника=10•520,02=5200,2 см²
--–––––––––
Непонятно, для чего в условии упомянут квадрат.
Биссектриса АС делит угол XAK пополам. значит угол CAK=60/2=30 градусов. следовательно треугольник ACK - равнобедренный с основанием AK, углами при основании по 30 градусов. AC=CK как боковые стороны равнобедренного треугольника.
Найдем AC. AC является гипотенузой прямоугольного треугольника AXC. Угол XAC=30 градусов, т.к. биссектриса поделила 60 градусов пополам. Значит угол ACX=60 градусов (180-30-90)
Вычислим длину гипотенузы по известному катету XC и углу между ними ACX
AC = XC/ cos(60 град)
cos60 град= 1/2 = 0,5
AC = 6/ 0,5 = 12
CK=12