надеюсь, рисунок сможешь сам сделать, но если надо, то я прикреплю
Объяснение:
Сделаем рисунок и соединим вершины С и D данных треугольников. Обозначим точку пересечения CD с АВ буквой Н.
Рассмотрим ∆ CAD и ∆ CBD
АС=СВ и AD=BD по условию; сторона СD- общая.
∆ CAD = ∆ CBD по 3-му признаку равенства треугольников.
Тогда ∠АСD=∠BCD;
∠CDA=∠CDB.
СD- биссектриса углов при вершинах С и D равнобедренных треугольников.
По свойству равнобедренных треугольников биссектриса, проведенная к основанию, является еще и высотой и медианой. ⇒
СН и DН - медианы этих треугольников, а поскольку у них общее основание АВ, то CD проходит через середину АВ, ч.т.д.
Так как две грани одинаково наклонены к основанию, то проекция ребра PL на основание - это биссектриса угла α.
Отрезок MN = a*tg(α/2).
Высота РН = a*tg(α/2)/ tg(β).
Боковое ребро РМ - оно же и высота боковой грани PML - равно:
РМ = MN / cos(β) = a*tg(α/2)/cos(β).
Катет основания СМ = a*tg(α).
Гипотенуза CL = a/cos(α).
Высота PS грани CPL равна длине ребра РМ по равенству их проекций: MN = NS.
Теперь можно определить площади боковых граней.
S(CPM) = (1/2)(a*tg(α))* a*tg(α/2)/ tg(β) = (a²/2)*tg(α)*tg(α/2)/ tg(β).
S(PML) = (1/2)a*(a*tg(α/2)/cos(β)) = (a²/2)*tg(α)*tg(α/2)/cos(β).
S(CPL) = (1/2)(a/cos(α))* (a*tg(α/2)/cos(β)) = (a²/(2cos(α))*(tg(α/2)/cos(β)).
Осталось сложить:
Sбок = (a²/2)((tg(α/2)/tg(β))+ (tg(α/2)/cos(β)) + (tg(α/2)/(cos(α)*cos(β))).
надеюсь, рисунок сможешь сам сделать, но если надо, то я прикреплю
Объяснение:
Сделаем рисунок и соединим вершины С и D данных треугольников. Обозначим точку пересечения CD с АВ буквой Н.
Рассмотрим ∆ CAD и ∆ CBD
АС=СВ и AD=BD по условию; сторона СD- общая.
∆ CAD = ∆ CBD по 3-му признаку равенства треугольников.
Тогда ∠АСD=∠BCD;
∠CDA=∠CDB.
СD- биссектриса углов при вершинах С и D равнобедренных треугольников.
По свойству равнобедренных треугольников биссектриса, проведенная к основанию, является еще и высотой и медианой. ⇒
СН и DН - медианы этих треугольников, а поскольку у них общее основание АВ, то CD проходит через середину АВ, ч.т.д.
Так как две грани одинаково наклонены к основанию, то проекция ребра PL на основание - это биссектриса угла α.
Отрезок MN = a*tg(α/2).
Высота РН = a*tg(α/2)/ tg(β).
Боковое ребро РМ - оно же и высота боковой грани PML - равно:
РМ = MN / cos(β) = a*tg(α/2)/cos(β).
Катет основания СМ = a*tg(α).
Гипотенуза CL = a/cos(α).
Высота PS грани CPL равна длине ребра РМ по равенству их проекций: MN = NS.
Теперь можно определить площади боковых граней.
S(CPM) = (1/2)(a*tg(α))* a*tg(α/2)/ tg(β) = (a²/2)*tg(α)*tg(α/2)/ tg(β).
S(PML) = (1/2)a*(a*tg(α/2)/cos(β)) = (a²/2)*tg(α)*tg(α/2)/cos(β).
S(CPL) = (1/2)(a/cos(α))* (a*tg(α/2)/cos(β)) = (a²/(2cos(α))*(tg(α/2)/cos(β)).
Осталось сложить:
Sбок = (a²/2)((tg(α/2)/tg(β))+ (tg(α/2)/cos(β)) + (tg(α/2)/(cos(α)*cos(β))).