Рассмотрим треугольники авс и mnc. они подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны: - cn : cb = cm : ca = 9 : 12 = 12 : 16 = 3 : 4 (коэф. подобия 3/4); - угол с - общий для треугольников. у подобных треугольников соответственные углы вас и nmc равны. они являются также соответственными углами при пересечении двух прямых ав и mn секущей ас. используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. значит, ab ii mn.
Т.к один из углов при основании равен 60, следовательно и другой угол равен 60, следовательно в сумме два угла при основании равны 120, 360-120=240, следовательно два угла равны по 60, и другие два по 120 градусов, т.к это равнобедренный треугольник. Значит боковые стороны равны. Периметр равнобедренной трапеции сумма всех ее сторон. Если провести две высоты из улов, то мы получим прямоугольник и ее основания равны 15см, дальше через синус острого угла равного 60 градусам, находим боковые стороны прямоугольного треугольника, полученного нами, он равен: sin60=X:17 ( это мы нашли катет прямоугольного треугольника, 49-15=34, 34:2=17), дальше синус 60=0,9, значит: 0,9=X:17, отсюда x=0,9*1,5=1,35см сторона BH1 (ну это трапеция ABCD, проводим высоты BH1 и CH2, получим прямоугольные треугольники ABH1 и CDH2), отсюда AH1=17, значит DH2 тоже, BH1=CH2=1,35, отсюда по теореме Пифагора находим гипотенузу AB в квдрате=289+1,8225=290,8225, квадратный корень этого числа=17,05см. Отсюда периметр=17,05+17,05+15+49=98,1. Нет нельзя описать, и вписать окружность. Надеюсь все понятно, и я