Полная площадь поверхности конуса - это сумма площади основания и площади боковой поверхности. Площадь основания - это площадь круга с радиусом 6. Она равна πR²=36π. Т.к. требуется найти площадь поверхности, деленную на π, то можно сразу же и выполнить это деление: 36π/π=36.
Боковая поверхность конуса равна πRL, где R - радиус основания, а L - длина образующей. Также сразу делим на π и получаем RL - это площадь боковой поверхности, деленная на π.
Длину образующей определим из прямоугольного треугольника, катетами которого являются высота конуса и радиус основания (т.к. высота прямого конуса опускается из вершины конуса в центр основания и перпендикулярна плоскости основания, т.е. любой прямой в плоскости основания), а гипотенузой - образующая конуса, проведенная из конца радиуса к вершине.
По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, т.е. квадрат гипотенузы равен 4²+6² = 16+36 = 52 = 4*13. B значит, длина образующей L равна 2√13.
Площадь боковой поверхности, деленная на π, равна RL = 6*2√13 = 12√13.
Полная поверхность конуса, деленная на π, равна 36+12√13
1. В равнобедренной трапеции сумма противолежащих углов равно 180° ⇒ острый угол равен 45°. 2. Рассмотрим Δ, который образуется высотой: один из углов прямой, другой (из п.1) равен 45° ⇒ третий угол равен 45°⇒ этот треугольник равнобедренный ⇒ высота равна наименьшему отрезку, который она отсекает на большем основании. 3. Пусть длина высоты = x, тогда длина большего основания равна 3x. Если провести вторую высоту, то отрезок на большем основании между этими высотами будет равен меньшему основанию ⇒ это расстояние равно 6. Таких частей всего 3 ⇒ большее основание равно 18. 4. S трап. = 1/2(a+b)h ⇒ S трап. = 1/2(24*6) = 72
Площадь основания - это площадь круга с радиусом 6. Она равна πR²=36π. Т.к. требуется найти площадь поверхности, деленную на π, то можно сразу же и выполнить это деление: 36π/π=36.
Боковая поверхность конуса равна πRL, где R - радиус основания, а L - длина образующей. Также сразу делим на π и получаем RL - это площадь боковой поверхности, деленная на π.
Длину образующей определим из прямоугольного треугольника, катетами которого являются высота конуса и радиус основания (т.к. высота прямого конуса опускается из вершины конуса в центр основания и перпендикулярна плоскости основания, т.е. любой прямой в плоскости основания), а гипотенузой - образующая конуса, проведенная из конца радиуса к вершине.
По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, т.е. квадрат гипотенузы равен 4²+6² = 16+36 = 52 = 4*13. B значит, длина образующей L равна 2√13.
Площадь боковой поверхности, деленная на π, равна RL = 6*2√13 = 12√13.
Полная поверхность конуса, деленная на π, равна 36+12√13
2. Рассмотрим Δ, который образуется высотой:
один из углов прямой, другой (из п.1) равен 45° ⇒ третий угол равен 45°⇒ этот треугольник равнобедренный ⇒ высота равна наименьшему отрезку, который она отсекает на большем основании.
3. Пусть длина высоты = x, тогда длина большего основания равна 3x. Если провести вторую высоту, то отрезок на большем основании между этими высотами будет равен меньшему основанию ⇒ это расстояние равно 6. Таких частей всего 3 ⇒ большее основание равно 18.
4. S трап. = 1/2(a+b)h ⇒ S трап. = 1/2(24*6) = 72