X,y - основания трапеции a - боковая сторона h - высота, h=4/5a 2a+x+y=64- периметр трапеции Рассм. треугольник, образованный высотой трапеции h, боковой стороной a: основание треугольника - (y-x)/2, тк по условию задачи, y-x=18, то основание треугольника равно 9. по теореме пифагора, 81=a*a+h*h 81=a*a+16/25a*a, отсюда получаем, что а=15. h=4/5*15=12 Из уравнения 2a+x+y=64 и y-x=18, находим, что основания трапеции х и у равны 8 и 26 соотвественно. Площадь трапеции равна полусумме оснований на высоту, т.е. 0,5*12*(8+26)=204
a - боковая сторона
h - высота, h=4/5a
2a+x+y=64- периметр трапеции
Рассм. треугольник, образованный высотой трапеции h, боковой стороной a:
основание треугольника - (y-x)/2, тк по условию задачи, y-x=18, то основание треугольника равно 9.
по теореме пифагора, 81=a*a+h*h
81=a*a+16/25a*a, отсюда получаем, что а=15. h=4/5*15=12
Из уравнения 2a+x+y=64 и y-x=18, находим, что основания трапеции х и у равны 8 и 26 соотвественно.
Площадь трапеции равна полусумме оснований на высоту, т.е. 0,5*12*(8+26)=204
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.