1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
А) проведем высоту к основанию, она будет являться медианой 1) делит основание на два равных отрезка 2)образует с основанием угол в 90* получится два равных прямоугольных треугольника. рассмотрим один из них- нам известна гипотенуза и катет. Х-высота ( в р/б) и катет(в прямоугольном треугольнике) Гипотенуза=13 Один из катетов равен половине основания 10/2=5
по т пифагора найдем неизвестный катет( Х, высоту р/б) 13^2=5^2+x^2 x^2=169-25 x^2=144 x=корень из 144 х=12 дм б) s(р/б)=а*h/2 (а - основание) s(р/б)=12*10/2 s(р/б)=12*5 s(р/б)=60 дм^2
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.
проведем высоту к основанию, она будет являться медианой
1) делит основание на два равных отрезка
2)образует с основанием угол в 90*
получится два равных прямоугольных треугольника.
рассмотрим один из них- нам известна гипотенуза и катет.
Х-высота ( в р/б) и катет(в прямоугольном треугольнике)
Гипотенуза=13
Один из катетов равен половине основания
10/2=5
по т пифагора найдем неизвестный катет( Х, высоту р/б)
13^2=5^2+x^2
x^2=169-25
x^2=144
x=корень из 144
х=12 дм
б)
s(р/б)=а*h/2 (а - основание)
s(р/б)=12*10/2
s(р/б)=12*5
s(р/б)=60 дм^2