Воспользуемся теоремой о диагонали прямоугольного параллелепипеда: квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
На чертеже: а - длина, в - ширина, с - высота, d - диагональ.
d2 = а2 + в2 + с2.
422 + 122 + с2 = 522.
2 304 + 144 + с2 = 2 704.
2 448 + с2 = 2 704.
с2 = 2 704 - 2 448.
с2 = 256.
с = √256.
с1 = 16; с2 = -16 (второй корень не подходит, т.к. с - это высота параллелепипеда, значение которой не может быть выражено отрицательным числом).
Находим площадь поверхности параллелепипеда. У него 6 граней, каждая грань - это прямоугольник. Нужно найти площади каждой грани и сложить их. Формулой это можно записать так:
S поверх. = 2ас + 2ав + 2вс = 2 х (ас + ав + вс).
S поверх. = 2 х (48 х 16 + 48 х 12 + 12 х 16) = 2 х (768 + 576 + 192) = 2 х 1 536 = 3 072.
Находим объем параллелепипеда по формуле: V = а х в х с.
V = 48 х 12 х 16 = 9 216.
ответ: площадь поверхности параллелепипеда равна 3 072, его объем равен 9 216.
Там получается 2 прямоугольных треугольника, у который общая сторона - перпендикуляр. По теореме Пифагора находим перпендикуляр. Через 2 прямоугольника, у которых известен катет.
Если разность длин наклонных 5 см, то там, где проекция 7 см - гипотенуза равна х-5, а где проекция 18 см, - х. (чем больше проецкия, тем больше наклонная)
Итак находим перпердикуляр для каждого треугольника и приравниваем...
X^2-324= (x-5)^2-49
Отсюда Х= 30 см. - это мы нашли одну из наклонных.
Воспользуемся теоремой о диагонали прямоугольного параллелепипеда: квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
На чертеже: а - длина, в - ширина, с - высота, d - диагональ.
d2 = а2 + в2 + с2.
422 + 122 + с2 = 522.
2 304 + 144 + с2 = 2 704.
2 448 + с2 = 2 704.
с2 = 2 704 - 2 448.
с2 = 256.
с = √256.
с1 = 16; с2 = -16 (второй корень не подходит, т.к. с - это высота параллелепипеда, значение которой не может быть выражено отрицательным числом).
Находим площадь поверхности параллелепипеда. У него 6 граней, каждая грань - это прямоугольник. Нужно найти площади каждой грани и сложить их. Формулой это можно записать так:
S поверх. = 2ас + 2ав + 2вс = 2 х (ас + ав + вс).
S поверх. = 2 х (48 х 16 + 48 х 12 + 12 х 16) = 2 х (768 + 576 + 192) = 2 х 1 536 = 3 072.
Находим объем параллелепипеда по формуле: V = а х в х с.
V = 48 х 12 х 16 = 9 216.
ответ: площадь поверхности параллелепипеда равна 3 072, его объем равен 9 216.
Там получается 2 прямоугольных треугольника, у который общая сторона - перпендикуляр. По теореме Пифагора находим перпендикуляр. Через 2 прямоугольника, у которых известен катет.
Если разность длин наклонных 5 см, то там, где проекция 7 см - гипотенуза равна х-5, а где проекция 18 см, - х. (чем больше проецкия, тем больше наклонная)
Итак находим перпердикуляр для каждого треугольника и приравниваем...
X^2-324= (x-5)^2-49
Отсюда Х= 30 см. - это мы нашли одну из наклонных.
По теореме пифагора 30^2=324-H^2
H= корень из 576 см