Если из центра окружности, вокруг которой описан правильный шестиугольник, провести две прямые до пересечения с началом и концом одной из сторон шести угольника, мы получим равносторонний (угол между радиусами равен 360 градусов :6 = 60 градусов) треугольник, высота которого равна радиусу окружности. Как известно, высота, опущенная на сторону равностороннего треугольника, делит ее пополам. Тогда, сторона шести угольника, она же сторона равностороннего треугольника, она же гипотенуза прямоугольного треугольника, один катет которого - радиус окружности, а другой - половина половина гипотенузы, можно вычислить по формуле: а² =r² +(a/2)²; a= 2r/√ 3; Подставляем значение r=5√ 3; a=10.
Площадь основания S=Dd/2=AC*BD/2. Т.к. диагоналиBD:AC=8:15, AC=15BD/8, то S=15BD/8*BD/2=15BD²/16, откуда ВD²=16S/15=16*240/15=256, ВD=16 см и АС=15*16/8=30 см. Зная диагонали ромба (у ромба все стороны равны, а диагонали пересекаются под прямым углом и в точке пересечения делятся пополам), можно найти его сторону а²=(d/2)²+(D/2)²=(BD/2)²+(AC/2)²=64+225=289, a=17 см. У прямого параллелепипеда боковые грани прямоугольники. Рассмотрим прямоугольный треугольник ВВ1Д - у него угол В прямой, угол В1=45, значит и угол Д=45, следовательно треугольник равнобедренный ВВ1=ВД=16 см (это есть высота параллелепипеда с). Площадь полной поверхности Sпол=2(ав+вс+ас)=2(а²+2ас)=2(17²+2*17*16)=1666 см².