ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
эта на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. а для этого нам даны координаты. найдем коориданты векторов ab,bc,ac. для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.
ab(1-0; -1-1; 2+1)=ab(1; -2; 3)
bc(3-1; 1+1; 0-2)=bc(2; 2; -2)
ac(3-0; 1-1; 0+1)=ac(3; 0; 1)
теперь найдем длину этих векторов.
теперь запишем теорему косинусов, используя косинус угла с.
решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
эта на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. а для этого нам даны координаты. найдем коориданты векторов ab,bc,ac. для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.
ab(1-0; -1-1; 2+1)=ab(1; -2; 3)
bc(3-1; 1+1; 0-2)=bc(2; 2; -2)
ac(3-0; 1-1; 0+1)=ac(3; 0; 1)
теперь найдем длину этих векторов.
теперь запишем теорему косинусов, используя косинус угла с.